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ABSTRACT

More accurate, more reliable and more efficient methods to calculate the bistatic scattering of
electromagnetic fields from absorbing dielectric objects have been developed. While the solution of three
dimensional scattering problems has not been achieved, the methods developed here provide for the first time
finite element solutions of closed three-dimensional electromagnetic fields free of the spurious solutions that
have plagued previous procedures. These stable finite elements are defined in three varieties: (1) mixed-order
rectangular parallelepiped elements, (2) edge-based tangential vector finite elements, and (3) derivative
continuous C1 elements. Each are shown to give only physically correct solutions. In addition, a new
procedure called the transfinite element method is presented for the solution of open or unbounded
electromagnetic scattering problems. This method provides a one step procedure to compute scattered fields in
electromagnetics. Prior to the transfinite element method, scattering problems required that many time steps
or many modes be used to produce each field solution. The transfinite element method is applied here only in
two dimensions. Finally, a new high efficiency algorithm is proposed to compute electromagnetic scattering
over a specified frequency range. In this algorithm, frequencies are selected adaptively to ensure a given
accuracy in minimum computation time for the specified frequency range. The individual procedures are
illustrated with a variety of examples. Thus, a great deal of progress in the solution of electromagnetic
scattering problems has been achieved, although the major program goal of solving for the electromagnetic
field- scattered by large three dimensional objects has not been accomplished.
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SECTION 1 INTRODUCTION

A program of work has been completed to develop more accurate, more reliable and more efficient
numerical procedures for the computation of electromagnetic fields scattered by absorbing dielectric objects.
This work has focused on the application of the finite element method to this problem since the finite element
method is well suited to modeling problems involving complex shapes and material properties. It involved the
solution of two separate fundamental problems in electromagnetics: (1) How does one approximate
electromagnetic fields over finite element domains such that stable solutions are produced? and (2) How does
one interface the open boundary condition encountered in scattering problems to the finite element solution in
an accurate and efficient manner?

The first application of the finite element method in electromagnetics was published by Silvester in
1969[l]. In this application, the finite element method was used to solve for the resonant electromagnetic
fields in homogeneous waveguides. Subsequently, Silvester and his coworkers published a series of papers
[2-6] extending the realm of application of the finite element method in high frequency electromagnetics.
However, it soon became apparent that the category of problem with which the finite element method was
stable was quite limited: the finite element method only gave good answers to problems in which a single
scalar variable was the unknown. Three-dimensional problems or two-dimensional problems that required the
solution of vector field quantities gave spurious solutions(3-6]. In fact, the subject of spurious modes in
finite element solutions of electromagnetics problems has generated considerable literature in recent
years[7-I11.

Parallel to the work of Silvester and otiavrs on the application of the finite element method to closed
high-frequency electromagnetics problems, Mei and his coworkers developed a procedure called the
unimoment method for solving scalar variable unbounded electromagnetic field problems using the finite
element method[12-131. This procedure makes it possible to solve complicated scattering problems by placing
the scatterer inside a circular boundary, discretizing the region inside the circle with finite elements, and
coupling the finite element solution to the analytical solution outside the circle through interface conditions.
Unfortunately, however, this coupling requires that a full set of modal finite element solutions be evaluated
such that each finite element solution and its derivative match the corresponding free space solution on the
circular interface. This process is relatively time consuming because many finite element problems need to be
solved to obtain a single scattered field solution and it is relatively inaccurate because numerical derivatives are
employed in the formulation.

The goal in this work is to develop numerical procedures by which relatively large three
dimensional dielectric scatterers can be modeled. To achieve this goal, two new developments were required:
First, it was essential to develop numerical procedures for modeling three dimensional electromagnetic field
problems in a stable way. Second, more efficient numerical procedures for setting up and solving open
electromagnetic field problems wee needed.
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This report documents progress we have made towards achieving these goals. With respect to the
problem of spurious solutions in three dimensional electromagnetic field calculations, we have developed three
new finite element procedures by which the problem of spurious solutions in electromagnetics is eliminated.
These procedures are: (1) mixed-order finite elements over rectangular parallelepipeds, (2) tangentially
continuous vector finite elements over tetrahedrons, and (3) C1 derivative continuous finite elements over
tetrahedrons. With respect to the problem of more efficient modeling of open electromagnetics problems, we
have developed a new procedure called the transfinite element method that is orders of magnitude more efficient
and more accurate than the unimoment method. We have also developed an adaptive spectral modeling
procedure that speeds up the solution of scattering problems over a range of frequencies by at least an order of
magnitude. Although time did not permit us to put everything together to solve three dimensional scattering
problems, we have developed the major theoretical components required for this purpose.

1.1 MOTIVATION

1.1.1 INTEGRAL VERSUS DIFFERENTIAL METHODS

Most common methods for solving electromagnetic scattering problems are based on integral
equation formulations. In general, these equations are discretized by using pulse or linear piecewise
polynomial basis functions and are solved by using Galerkin's method. Originated by Roger F. Harrington,
and dubbed the method of moments, such procedures for solving the electromagnetic field equations have been
applied in both two and three dimensional scattering. Although these procedures have been successful in
solving two dimensional scattering problems, their success in modeling three dimensional scattering has been
more limited.

An alternative to solving electromagnetic field problems using integral equation methods is to solve
these problems by using methods based on differential formulations of the electromagnetic field. The two best
known methods to solve differential equations are the finite difference and the finite element method. Although
there are some advantages to differential methods - such as much simpler expressions of the field equations -
these methods have been seldom used to solve electromagnetic scattering problems. Indeed, until recently, in
the United States there were only two research groups working on modeling electromagnetic scattering using
differential methods: (K. K. Mei at the University of California at Berkeley and Alan Taflove at Northwestern
University). There are two obvious reasons for this: (1) the number of data points required by differential
methods appears at first glance to be daunting, and (2) representing open, unbounded field problems is difficult
with differential methods. With integral methods these issues are less important: only the surfaces of objects
need to be discretized with integral methods so that relatively few data points are required. Further, the far field
boundary conditions are embedded in the Green's functions used in integral formulations so that open
problems are easily addressed.
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While it thus appears that integral methods have the advantage in solving electromagnetic scattering
problems, this is in fact not the case. As described in more detail below, a large number of methods to solve
open field problems by truncating the finite difference or finite element mesh have been developed. And,
surprisingly, the advantage of less computer storage requirements and of less computer time requirements is
actually on the side of differential methods. This is surprising because differential methods require many more
node points than integral methods. However, all of the interactions in a differential method are local in the
sense that all information in a differential model is passed directly from one element to the next. The
differential system is tied together by these local interactions, and the response of individual elements is
obtained by solving a matrix equation. With integral methods, information may pass directly from one side of
the structure to the other. The entire integral structure is tied together analytically from the very beginning by
evaluating the interaction that occurs directly between any two points. This process is not only analytically
challenging, it is also computationally intensive.

Thus, although differential methods are at a disadvantage because the full space must be modeled and
not just the object surfaces, they do have the advantage that global interactions are obtained numerically by
means of the matrix solution process rather that by using analytical expressions. Since computing the
interactions between different surface elements with integral methods is expensive, integral methods are at a
disadvantage in this respect compared to differential methods. Further, each element in an integral method
interacts with many other elements so that the matrix equation to be solved to compute scattering is full. In
contrast, the matrices arising in differential methods are sparse since each element interacts only with its
immediate neighbors.

The efficiency of numerical methods in solving electromagnetic scattering problems is determined
by several factors: (1) the efficiency of the mesh used to represent the objects and the solution variables, (2)
the difficulty and cost of mesh generation, (3) the cost of generating the solution matrix, (4) the matrix
storage and solution time requirements of the algorithm, and (5) the robustness of computer implementations
with respect to geometric and material complexity. These factors are examined next:

1. Mesh efficiency. An important consideration in evaluating the efficiency of both differential and
integral solution methods is the type of mesh required for its operation. The application of some
numerical methods is restricted to regular or rectangular meshes while other methods allow irregular
meshes with arbitrary orientations and sizes. Except in special cases, a mesh that conforms to the
boundaries of the objects that are modeled and that is refined locally in regions of rapid field
variation is much more efficient in modeling electromagnetic field problems than is a regular,
rectangular mesh. The gain in efficiency depends on a number of factors such as the problem
geometry and the method used to construct the mesh and is therefore difficult to quantify.
Fortunately, however, methods for constructing optimal triangular meshes in two dimensions and
optimal tetrahedral meshes in three dimensions have been developed [29-33]. These methods are
based on the concept of Delaunay tessellation that guarantees that the mesh employed is optimal
with respect to the element angles regardless of the point spacing. Furthermore, with irregular
meshes, it is possible to construct the mesh adaptively (29-32]. In adaptive mesh generation,
elements are refined iteratively in the areas having the largest error until all elements in the mesh
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have approximately the same error. In terms of accuracy for a given mesh size, adaptive Delaunay
mesh generation is the most efficient procedure, followed by non-adaptive Delaunay mesh
generation, other irregular mesh generation algorithms, and, last, regular mesh generation. The
advantage of regular mesh generation is, of course, that it is very easy and inexpensive to compute.
We believe, however, that the modeling efficiency obtained by using irregular meshes outweighs
the increased algorithmic complexity of these procedures in most cases.

2. Difficulty and cost of mesh generation. Since only the surfaces of objects need to be
discretized with integral methods while the entire volume must be discretized with differential
methods, it appears at first that it is easier to create a mesh with integral methods. However, it
turns out that this is not true if the goal is to obtain irregular meshes for arbitrary objects having
complicated shapes. (Creating regular meshes corresponding to simple shapes is easy with both
differential and integral methods). The reason for this is that the Delaunay approach to mesh
generation is well known and can be automated in both two and three dimensions. No direct,
automatic, optimal procedure to generate the surface mesh of arbitrary objects is known. At this
time, the only known way to create an optimal surface mesh for an arbitrary object is to first create
the three dimensional volume Delaunay mesh for the object and then to extract the corresponding
surface mesh. Thus, the difficulty and cost of mesh generation is roughly the same for both
differential and integral methods.

3. Matrix set up cost. Differential methods have a very great advantage over integral methods
with respect to matrix evaluation cost. When they are available, the formulas to compute matrix
entries with differential methods are simple and just involve arithmetic expressions. In comparison,
relatively complicated analytic expressions are required to set up matrices with integral methods.
The net result is that matrix evaluation cost is negligible with differential methods, but is often
substantial with integral methods.

4. Matrix storage and solution time requirements. The analysis of matrix storage and
solution time requirements is complicated because several different solution procedures exist. In the
past decade, the use of the preconditioned conjugate gradient algorithm has had a profound effect on
both differential and integral methods. The advantage of the preconditioned conjugate gradient
algorithm is that with differential methods matrix solution time increases linearly with matrix size,
compared to order N3 solution times for solving full matrix euations. In practice with non-adaptive
differential meshing procedures, solution time grows as Nl .with both two and three dimensional
geometries [28]. However, if adaptive finite element mesh generation procedures are employed, the
theoretical ideal limit N1.0 is achieved [29]. Thus, in the finite element discretization of a three
dimensional problem with an n X n X n mesh, the matrix size N grows as N = n3 and storage and
solution time for these sparse matrices increases linearly. The net result is that computer storage
requirements and solution times grow as N = n3 with differential methods. This value can be
achieved in practice by using adaptive or muligrid methods. (The primary difference between
multigrid and adaptive methods are that multigrid methods employ rectangular meshes while
adaptive methods allow irregular meshes; they are similar in that several levels of meshes are
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required). If non-adaptive mesh generation procedures are employed, then the performance of the
algorithm with respect to solution time deteriorates to approximately N3.6 .

With boundary element methods, only the elements on the surface of three dimensional objects need
to be modeled and the corresponding mesh grows as N = n2 . The straightforward application of
direct solvers to the corresponding full matrices results in storage and solution times growing as
N3. Thus, with integral methods and full matrix solution algorithms, computer requirements grow
as n6 . The application of the conjugate gradient algorithm to these matrices lowers the solution
time requirement to n4 and recent work by Catedra, Gago and Nuno [34] shows that combining the
conjugate gradient method and the fast Fourier transform reduces this further to n2 _66 7 log n. This
last result however only applies to problems having a uniform mesh and hence applies only to
problems having simple shapes. As stated earlier, with complicated geometries it is very inefficient
to use a uniform mesh and hence the fast Fourier transform conjugate gradient method is not
competitive in these cases.

5. Robustness. An important consideration in evaluating numerical algorithms for modeling
electromagnetic scattering is robustness with respect to the complexity of the geometry and of the
material properties of the scatterers. Here differential methods have a clear advantage: provided that
the same mesh is used in both cases, with differential methods it makes relatively little difference
whether the material characteristic of the entire problem domain is homogeneous or whether the
material characteristic of every single element in the mesh is different. Thus, although differential
methods solution requirements grow as the size of an object grows, they are relatively insensitive to
the complexity of the boundaries and to the number of material types that make up the object.
Further, differential methods can model extreme changes of material characteristics with ease and can
handle material nonlinearity efficiently. The performance of integral methods, on the other hand,
deteriorates not only as the size of a scatterer grows but also as its structure becomes more
complicated. Unlike the case with differential methods, the size of integral solution matrices
increases with the addition of each new boundary in a structure of given size and modeling nonlinear
material characteristics with integral methods is difficult.

In the final analysis, the efficiency of any method for solving electromagnetic scattering problems
must be judged by running actual computer programs. The performance of any algorithm is affected by the
implementation and sometimes synergisms exist in implementations that are difficult to quantify. However,
the above analysis shows that differential methods are clearly favored as scattering problems become larger
and more complicated. In the five categories examined above, where there is a difference, differential methods
prove to be superior to iraegral methods. In particular, in terms of matrix set up time, matrix solution time,
and robustness the better choice is the differential approach.
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1.1.2 TIME DOMAIN VERSUS FREQUENCY DOMAIN

A second issue in modeling electromagnetic scattering from dielectric scatterers is the choice of
analysis in the time or the frequency domain. With continuous wave (CW) signals, the logical choice is to
solve for the electromagnetic wave in the frequency domain since that is where the CW signals reside; with
pulsed signals, time domain methods appear to be the most appropriate choice since the signal is in fact a
transient in time. However, as discussed more fully below, time domain solutions are expensive since they
require many time steps to produce acceptable results. For large problems it is more efficient to decompose
the transient into a few Fourier components, solve the problem in the frequency domain at these few
frequencies and then reassemble the solution in the time domain. In addition to efficiency, this procedure has
the advantage that the dielectric constant of many materials is given as a function of frequency; with time
domain solutions, correct material property values are difficult to determine since they are usually given as
frequency dependent functions.

Nevertheless, all published work for modeling three dimensional scattering using differential
methods is in the time domain. Taflove and his coworkers [14,15] have employed the finite difference method
in the time domain, while Mei and his coworkers [12,131 have employed the finite element method in the
time domain. Common with both approaches is the time integration formula of Yee [16] that provides a
stable time integration procedure for Maxwell's equations. The Yee integration algorithm is the key to time
domain solution procedures: it is stable and does not require the solution of matrix equations. As we will see
below, stable solution procedures for three dimensional problems in the frequency domain have not appeared
in the literature previously.

The major advantages of the finite difference time domain (FDTD) method is that it is extremely
simple and that it is unnecessary to store matrix entries. Its disadvantages are that it is a low order method and
that it employs rectangular meshes with minor variations in element size and shape. With the finite element
method in the frequency domain (FEFD), although a matrix equation needs to be solved, the accuracy of the
solution can be improved by using higher order approximation functions and by employing irregular meshes.

To compare the relative efficiency of the FDTD and the FEED methods, we will make an order of
magnitude comparison. As is the case in comparing differential and integral methods, this comparison will
neglect all factors except the highest order trends and thus will serve to indicate only theoretical limits as the
problem size grows. To begin, the number elements N to achieve a given accuracy in three dimensional
problems goes as: N - h 3 where h is the mesh size used. Since the FDTD algorithm is based on linear field
interpolation, the order of accuracy of the FDTD algorithm is h2 . It has been shown [12-15] that, to obtain
accurate solutions, the time step At should be of the same order as the mesh size: At - h. Thus, the number of
time steps to obtain the solution gos as h" I . The the total complexity to obtain a FDTD solution goes in
the limit of increasing problem size as N/h - N1 .3 3 3 .

The order of accuracy of the finite element method depends on the order of polynomial interpolation
used. As a reasonable value and one that makes the calculation relatively easy, we will use cubic order finite
elements in the following. The order of accuracy of cubics is s4 , where s is the largest edge length in the
mesh. Assuming a uniform mesh (which greatly lowers the efficiency of finite element methods), we see that,
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to achieve the same accuracy, the FDTD mesh size h and the FEFD mesh size s are related by: h - s2. Thus
the number of finite elements M required to achieve the same accuracy as a FDTD mesh of N elements is M ,-
'IN or in terms of mesh size M - s 3 ,. h 1 .5. In the FEFD method, one must solve a sparse matrix equation.
As discussed before, the order of magnitude work required to do this increases linearly with the number of
elements if the preconditioned conjugate gradient algorithm is used with a multigrid mesh and goes as M1.2 if
a single level mesh is employed. The net result is that the total complexity if the FEFD method goes either
as M ,- N0"5 or as N0.6 depending on the number of mesh levels employed. In either case, the FEFD method
is far more efficient than the FDTD method.

It must be emphasized that the above analysis ignores the algorithmic details of computing
solutions on relatively small meshes and only examines global trends as the problem size grows. Since the
FDTD method is very simple while the FEFD is relatively complicated, it may be that for small, fixed-sized
problems the FDTD method is actually faster. The above analysis shows, however, that, as the problem size
gets larger, eventually the FEFD method will be the most efficient. Also, the FEFD method allows the use of
irregular meshes that are clearly superior for modeling problems having complicated geometries.

1.1.3 FINITE DIFFERENCES VERSUS FINITE ELEMENTS

It thus appears that the most efficient procedure to model three dimensional electromagnetic
scattering is to use differential methods in the frequency domain. There remains, however, the question of
which differential method to employ: the finite difference method or the finite element method. We note here
that the differences between these methods is often just semantics: different people will sometimes call the
same method finite elements or finite differences depending on their viewpoint. For example, the methods
developed by Taflove and by Mei are identical except that Taflove uses a rectangular mesh and calls it finite
differences while Mei allows the mesh to be distorted and calls it finite elements. Here we take a finite
difference method to be one that is derived by considering the difference equations formed by point values of
the differential equation without reference to variational calculus. A finite element method, on the other hand,
is taken to be a method that employs basis functions to approximate the field in a variational procedure -
either a Galerkin method or the Rayleigh-Ritz method.

From the point of view of accuracy and efficiency, finite element methods have four advantages over
finite difference methods. The first of these advantages is the fact that one can show [171 that the errors in
finite element methods are minimized in a least squares sense and hence, in general, will be more accurate than
finite difference methods. Second, since the finite elements may be of any shape, the meshes formed in finite
element methods are often more flexible geometrically than the meshes formed in finite difference methods.
Third, it is relatively easy with finite element methods to construct elements having a high order of
interpolation; high order formula are hard to construct with finite difference methods. And fourth, finite
element methods satisfy certain boundary conditions automatically - called the natural boundary conditions -
that are lacking in finite difference methods.
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1.1.4 SCOPE OF THIS PROJECT

For the above reasons, the direction of research pursued in this project was to develop finite element
methods in the frequency domain for the solution of open three dimensional electromagnetic scattering
problems. This was an ambitious goal: prior to the work in this project, no stable finite element method in
the frequency domain for solving even closed cavity three dimensional electromagnetic fields was known.
Further, methods of coupling the finite element solution region to the exterior field were grossly inefficient.
Unfortunately, due to budgetary constraints the manpower available to work on this project was limited and it
was not possible to develop a three dimensional scattering program during the course of this project.
However, a great deal of useful work was accomplished. In particular, we solved the two bottleneck issues in
applying finite element analysis to this area: in this project we developed and tested for the first time stable
finite element methods for the steady-state three dimensional analysis of electromagnetic fields, and we
developed the transfinite element method for the analysis of unbounded problems in electromagnetics and
tested this method in two dimensions. Thus, although we did not accomplish the original project goal of
solving the electromagnetic scattering from large three dimensional dielectric objects, we are proud to have
developed three important new concepts - tangential finite elements, C1 quadratic finite elements, the
transfinite element method, as well as the lesser but useful adaptive spectral response modeling procedure -
during the course of this project. It should be noted that work reported here has been invited for presentation at
two conferences, one to be given at the IEEE APS/URSI Symposium to be held in Syracuse, NY in June,
1988 and the second invited paper to be given at the IEEE Intermag Conference to be held in Vancouver, BC
in July, 1988.

. . .. ... ....... . . . . . . m a m , a l a i t i ai
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SECTION 2 FINITE ELEMENT FORMULATIONS

2.1 THE ZERO DIVERGENCE CONDITION

Although the application of the finite element method to three dimensional electromagnetic field
problems appears at first glance to be straightforward, this in fact is not the case. As described more fully in
Appendix A, the application of the standard finite element method to three dimensional electromagnetics
results in "spurious modes". These spurious modes make the solution procedure worthless. It should be noted
that the problem of spurious modes is not limited to closed cavity problems; finite element solutions of any
electromagnetics problem - open or closed - will be spurious if the basic approximation procedure is incorrect.

Although we now know that it is not true, the common view published in the literature [3-11] is
that spurious modes are a result of not enforcing the zero divergence of the electric or of the magnetic field
rigorously. This view was created by the fact that spurious modes do exhibit a non-zero divergence. To solve
for the electromagnetic field, the finite element method is applied to the vector wave equation. While the zero
divergence of the field is a consequence of this equation, zero divergence is not enforced explicitly in the usual
finite element procedure. Several published papers [9-1l] attempt to eliminate spurious modes by attempting
to enforce the zero divergence condition on the vector field. In the published work, this is achieved only in a
least-squares sense by adding a penalty term proportional to the square of the divergence to the variational
principle

At the start of this project, we also believed that the way to eliminate spurious modes was to
enforce the zero divergence condition on the electromagnetic field. In fact, at the time that we wrote the
proposal for this project, we had just developed a numerical procedure by which the zero divergence condition
could be imposed explicitly in the finite element method. This procedure is published in reference [18]. This
procedure did exactly what we believed was required to eliminate spurious modes: it enforced the zero
divergence of the field exactly. Consequently, we stated in our proposal that we would employ this procedure
to generate stable solutions for three dimensional electromagnetics problems; we began work on this project
believing that this approach would solve the instability problem.

Unfortunately, however, we discovered later that the zero divergence condition is in fact unrelated to
the problem of spurious modes. Enforcing the the zero divergence condition by the method of reference [18]
does not alter the fundamental characteristic of standard finite element methods: the solution is unstable at
certain unpredictable frequencies. The idea that we had worked towards - namely to enforce the zero divergence
condition exactly on the vector field - did not accomplish the desired result. The failure of this approach to
produce stable three dimensional field solutions was both disappointing and perplexing.
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2.2 THE ORIGIN OF SPURIOUS MODES

Fortunately, a publication in the IEEE Transactions on Microwave Theory and Techniques set us on
the path the would lead to the eventual solution of the spurious mode problem. A paper by Hano [19] showed
that spurious modes do not appear in two dimensional finite element solutions if rectangular mixed
constant-linear elements are used as the basis functions in the approximation. While rectangular elements are
not ideal for modeling complicated shapes, Hano's paper did allow us to derive the key principle required for
stable solutions of the electromagnetic field: It must be possible to express the basis functions used in the
finite element method as the gradient of a scalar for this method to provide stable solutions of the vector wave
equation. As will be described below, we have used this principle to derive several different methods for
computing stable solutions to electromagnetic field problems.

To understand above principle, notice that the curl of the gradient of any scalar function is zero.
Thus, these functions are nullvectors of the curl operator. Since the operator in the vector wave equation is the
curl operator twice over, the gradient of any scalar is an eigenvector of the vector wave equation with
eigenvalue zero. Provided that the finite element approximation functions can be expressed as the gradient of a
scalar, the approximation functions themselves provide a basis for the nullspace of the curl operator. The
eigenvalues of the approximation functions will thus be zero. However, if the approximation functions cannot
be expressed in the required form then their eigenvalues will not be zero. Hence, the eigenvalues of the
nullspace, which should all be zero, will be shifted to non-zero values. This is the source of spurious modes:
spurious modes are approximations to the nullvectors of the vector wave equation that are shifted in frequency
so much that they interfere with the real physical modes.

2.3 STABLE FINITE ELEMENTS

We are thus able to explain the cause and the origin of spurious modes. The next step is to develop
finite elements with the required properties to avoid them. The first way to accomplish this is to extend
Hano's element to three dimensions and to higher order polynomials. This is relatively straightforward; the
mathematical details are presented in Appendix A. As shown by the example problems in this Appendix,
these elements work exactly as predicted: no spurious modes occur when solving three dimensional field
problems using these new elements. There are zero eigenvalues but these zero eigenvalues do not interfere
with the physical solutions. Furthermore, the number of zero eigenvalues equals exactly the dimension of the
nullspace of the curl operator.

While the success of the rectangular elements in Appendix A in eliminating spurious modes is
encouraging, it is not sufficient. Rectangular elements are just as crude for approximating complex shapes as
are finite difference methods. Clearly, triangular finite element methods that satisfy the above property are
required if we are to achieve the efficiencies hoped for at the start of this project.
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Finding triangular finite elements that represent the gradients of scalars is not an easy task. Suppose
that we choose the scalar to be an ordinary triangular finite element complete in polynomials of order n. It is
easily seen that the derivative of a complete n'th order polynomial is a complete polynomial of order (n - 1).
However, since (n - 1)'st order finite elements are basically the same as n'th order elements, we are lead to the
false conclusion that the components of the gradient can be expressed in terms of ordinary triangular finite
elements. We know that this conclusion is false: ordinary finite elements generate spurious modes in general!

To resolve the above paradox, we need to consider not only the effect of the gradient on the inside of
the element but also its effect along the element edges. Ordinary triangular finite elements are said to be CO

continuous. This means that the functions in these approximation are continuous but that their derivatives are
not continuous. The gradient of a CO finite element will therefore be a vector that has continuous tangential
components but discontinuous normal components. Thus, stable triangular finite elements are obtained by
creating elements that impose continuity of the tangential component of the vector field but allow the normal
component to be discontinuous. Such finite elements are indeed possible; Appendix B presents details of the
mathematical derivation. It should be noted that although it is possible to create these tangential vector
approximation functions, this does not guarantee that they will provide correct solutions to the
electromagnetic field; the fact that they do is a consequence of the natural boundary conditions in the
variational procedure. The full details of the synergism between tangential elements and the natural boundary
conditions of the variational procedure are given in Appendix B.

There is, however, a second solution to the above paradox. Let us repeat the above discussion, but
replace the CO scalar with a C1 scalar. With a C1 scalar, both the function and its first derivative are
continuous so that both the tangential and normal components of its gradient are continuous. The components
of the gradient are thus ordinary CO finite elements; this time, however, they must be compatible with a C1

scalar as its parent.

The lowest order polynomials that allow C1 continuity are quadratics. Surprisingly, no one had
developed an explicit form for these polynomials prior to the work reported here. The basic idea with C1

quadratics is that it is impossible to generate derivative continuous polynomials one element at a time; rather,
one must subdivide each triangular element in a certain way into six subtriangles in order to achieve C1

continuity. The full details of this process are given in Appendix C.

Thus the C1 elements developed in Appendix C provide a fascinating irony. It turns out that
ordinary finite elements work correctly after all, but only if they are placed in a special pattern. If an arbitrary
pattern of finite elements is used to approximate the components of electric or magnetic field vector, then in
general the nullspace of the curl operator will be improperly modeled and spurious models will result. If,
however, the pattern of finite elements that approximate the vector field is such that a C1 scalar is possible,
then no spurious modes will result. Note that it is not required in this process to form the Cr scalar
explicitly; the possibility of these C1 scalars is sufficient to ensure stability of the electromagnetic solution.

Finally, the C1 elements may themselves be used directly to generate stable finite element
solutions of electromagnetic field problems. Since the electric and magnetic fields are nondivergent one may
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define a vector potential that provides these fields. The divergence of this potential function is arbitrary; all
that is required is that its curl equal the field variable. Substituting this vector potential into the vector wave
equation gives a new equation that requires continuity of the potential and of its derivative. The C1 finite
elements of Appendix C have exactly the required properties. Consequently, if we use these C1 elements to
approximate each component of the vector potential function, stable finite element solutions result. Details of
this procedure are presented in Appendix D.

Since we have now developed not one but three different stable procedures for solving three
dimensional electromagnetic field problems using triangular finite elements, it is appropriate to ask: Which is
the best? From the point of view of simplicity of formulation and ease of use, the answer is clear: The
tangential finite elements of Appendix B are simpler to understand and to program than the C1 elements of
Appendix C or the potential formulation of Appendix D. Fortunately, this simplicity also translates into a
computational advantage: since the matrices produced by tangential elements are very sparse, while the
matrices produced by the Cl elements are relatively full, tangential elements are not only simpler to use than
the C1 elements, they are faster.
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3. THE INFINITE SOLUTION REGION

3.1 EXTERIOR FIELD MODELS

A basic characteristic of scattering problems is that the solution region is infinite. A plane wave
originates at infinity and travels through free snace, impinging on an object that scatters the wave in various
directions back towards infinity. In xder to solve this problem with finite elements, the problem region must
be divided into two parts: (1) an interior region surrounded by a boundary called a "picture frame" that
completely encloses the scatterer, and (2) an exterior region that extends from the picture frame to infinity.

The problem of modeling the exterior field region is difficult because the solution region
encompasses an infinite number of wavelengths. Furthermore, while the energy in the scattered wave is finite,
the energy in the incident plane wave is infinite; this fact complicates the use of energy-based solution
methods. Despite these difficulties, however, a variety of methods have been developed to solve scattering
problems by finite element methods. Exterior field formulations may be divided into three groups: those
based on integral methods, those base on differential methods, and those based on modal analysis. In the
following, we list the essential characteristics of each approach.

3.1.1 BOUNDARY INTEGRAL AND BOUNDARY ELEMENT METHODS

The oldest way to model open boundary problems with finite element methods is simply to resort
to integral methods to handle the infinite exterior region. Such solution procedures are usually called boundary
integral methods. A common variant of boundary integral methods is the boundary element method in which
the boundary integral is discretized by using the piecewise polynomials first employed in the finite element
method [20]. With these methods, one has to compute the values of an integral that is singular on the
boundary. A way to circumvent this difficulty is to employ two picture frames, one for the equivalent
boundary integral sources, another for the observation points. This procedure was employed early in the
history of numerical methods by Silvester [211 and by Wexler [22]. The separate source-observation approach
has been converted into a pure integral equation form by Ludwig recently [23].

The advantage of boundary integral and boundary element methods is that they are very well known.
Their disadvantage is that they are relatively expensive because it is necessary to compute the required
integrals of the Green's functions and because the boundary elements produce a full matrix on the picture
frame boundary.
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3.1.2 BALLOONING, CLONING AND INFINITESIMAL SCALING

Ballooning is an entirely different approach to modeling the exterior field region. It was invented by
Silvester [24] in 1974 and has the advantage of being a pure differential approach. The idea is the following: A
single layer of finite elements is created outside the picture frame boundary. This layer has elements placed
such that the radial edges all converge to a single point called the star point. By "blowing" this layer of
elements up so that the inner boundary of the new layer coincides with the outer boundary of the original
layer, a second layer of elements is formed that is similar in a geometrical hence to the original layer. These
two layers are then joined and the nodes on the common boundary are eliminated. The resulting double layer
has the same number of unknowns as the original single layer but is more than twice as large. It is then also
blown up, the two double layers joined and the in between common nodes eliminated. This process is repeated
until it approximates the infinite region as closely as desired. (In practice, seven or eight iterations are usually
sufficient). The exterior field approximation is then combined with the interior field approximation and the
problem solved.

The original approach of Silvester could only be used to model Laplacean regions. This is because
in two and three dimensions the size of the finite elements in each layer grows larger and larger. In a
Laplacean region this is desirable because the solution becomes smoother with increasing distance from the
object, but this is inappropriate with wave problems where the distance between waves is invariant with
distance from the scatterer. The ballooning approach was extended to wave propagation by Das Gupta and
renamed cloning [251. In cloning, only a single layer of finite elements are required, but the property of
geometric similarity is used to create an eigenvalue equation that represents the entire exterior field region.

A third variant of ballooning was developed by Hurowitz [26]. In this approach, called infinitesimal
scaling, the single layer of finite elements is made infinitely thin. In this limit, the exterior field problem is
converted into an ordinary differential equation. Unfortunately, this differential equation is nonlinear and
expensive to solve.

3.1.3 MODAL ANALYSIS METHODS

The third procedure for solving open scattering problems is semi-analytical. In this case, the
electromagnetic field in the exterior region is expressed as a linear combination of orthogonal modes and the
field in the interior region is expressed as a linear combination of finite elements. The entire solution region
is solved by tying these two approximations together with continuity conditions along the picture frame
boundary.

The modal approximation method for electromagnetic scattering was once again first proposed by
Silvester for one dimensional propagation to infinity [27]. Electromagnetic scattering in one dimension
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assumes that the scattered field is confined to waveguides that are connected to a two dimensional waveguide
junction. In Silvester's approach, the electromagnetic field in the waveguides are expressed in terms of normal
modes and the normal modes in the waveguide junction are solved by using the finite element method.
Continuity of the field between the two sets of modes is then used to determine the total field.

The modal approach to two dimensional scattering was developed by Mei (12,13] and called the
unimoment method. In Mei's approach, the electromagnetic field in the exterior region is expressed in terms
of the normal modes for this open region. Each mode is then used to set up a finite element problem that is
solved for the interior field. The total field is given by a linear combination of these finite element solutions.
An unfortunate aspect of this approach is that continuity must be imposed on both the field and its derivative
along the picture frame boundary.

While both of these modal solution procedures work, they are both expensive. Silvester's approach
requires taat the normal modes of the finite element region be computed; finding these eigenfunctions is a
very costly process. Mei's approach requires that n finite element problems be solved where n is the number
of modes used in the exterior region. Further, Mei's method results in non-symmetric matrices with which the
standard preconditioned conjugate gradient algorithm doesn't work.

3.2 PRELIMINARY INVESTIGATIONS

At the start of this project, we planned to use the cloning algorithm to model the field in the
exterior region. It promised to be fast and accurate, and was simple to program. As stated above, in cloning a
single layer of finite elements is created on the surface of a picture frame boundary. The entire exterior field
description is extracted from this single layer in cloning, while in ballooning layer after layer of similar,
larger elements are added to the first. The idea is that since all of the field information is in the single layer -
after all it is just replicated in ballooning to form the other layers - it should be possible to obtain the
essential characteristics of the exterior field from this one layer. The way this was accomplished by Das Gupta
is to assume that the field falls off as 1/R from the inside to the outside of this layer. imposing this condition
on the single layer finite element model results in an eigenvalue equation for the field in the single layer and
hence for the full problem. However, in using the algorithm to solve some test problems, we were unable to
get the correct answers. We believe now that decay rate of I/R is correct only far from the scatterer and does
not apply to a layer of elements that are close to the scattering object. To make the procedure valid, we must
move the picture frame far enough from the scatterer to make the I/R decay rate valid; however, at that
distance there is no need to compute the exterior field any further - one has already obtained the far field
pattern. Consequently, we abandoned the idea of using the cloning algorithm of Das Gupta to compute the
exterior field.

The next approach we used to solve the exterior field problem was to modify the ballooning
algorithm in such a way that the size of the elements in the replicated layers stays constant. The purpose of
this, of course, is to ensure that if the first layer of finite elements is small enough to approximate the wave
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correctly, then all other layers of elements are small enough as well. To accomplish this objective, we had to
abandon the idea of using a radial star point to generate the elements; instead, we devised various rectangular
patterns of elements with the desired property. However, it became apparent in working with these patterns in
two dimensions that this approach was quite unwieldy; it would be impossible to use in three dimensions.
Thus, we were forced to abandon the ballooning approach as well.

Fortunately, we next turned to the modal approach to model the exterior field. After a few false
starts, we discovered an excellent way to model the exterior field in scattering problems. We call the new
approach the transfinite element method, and it is described next.

3.3 THE TRANSFINITE ELEMENT METHOD

The basic idea of the transfinite element method is to use the modal expansion functions that
represent the exterior field as approximation functions in the variation procedure. In effect, the modes form
semi-infinite finite element basis functions for the semi-infinite region. Full details of the transfinite element
method along with some examples of solutions of two dimensional scattering problems are given in
Appendix E.

There are many advantages of the transf'mite element method compared with other procedures:

1. It is a direct method. Since the modal functions in the transfinite element method are used in
exactly the same way as finite element functions, this method gives the solution of scattering
problems directly in one step. In the unimoment method, modal functions are used to match the
exterior and interior field solutions but are not used directly in the variational procedure.
Consequently, many finite element solutions must be computed to obtain a single field solution
with the unimoment method, while only one finite element solution is required for each frequency
with the transfinite element method.

2. It is a symmetric method. The transfinite element method produces symmetric matrix
equations that are easily solved by the preconditioned conjugate gradient algorithm. With large
problems, this is orders of magnitude faster than solving non-symmetric matrix equations by other
sparse matrix techniques.

3. It is a simple method. Only one solution is required and only continuity of the field is required
in the transfinite element method. Methods that require multiple solutions and continuity of both
the field and its derivative are more difficult to program and are less accurate as well.

4. It is an efficient method. With almost all exterior boundary models, the number of variables
corresponding to the exterior field is equal to the number of nodes on the picture frame boundary.
This is very costly: there are many picture frame boundary nodes and all of these nodes are
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interconnected so that the corresponding matrix elements are full. In the transfinite element method,
the number of variables corresponding to the exterior field is equal to the number of modes - not
nodes - used to approximate the exterior field. This is a relatively small number - usually on the
order of ten or twenty - compared to the hundreds or even thousands of nodes on the boundary.
Thus, the transfinite element method provides a relatively efficient procedure for approximating the
exterior field.

In every respect, the transfinite element method is better than the existing alternatives. By making
the exterior field model simple and efficient, the solution of large scattering problems becomes possible. In
fact, the transfinite element method is so good and so simple that one is tempted to ask: Why wasn't the
transfinite element method invented years ago? The answer seems to be that very few people have ever worked
on differential methods to model scattering problems, and the few that have worked in this area have pursued
other directions of research.
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4. SPECTRAL METHODS

As noted in the Introduction, frequency domain methods are more efficient for continuous wave
modeling than are time domain methods. However, many problems require that the response to
electromagnetic scattering be computed over a wide frequency range. If done by brute force, this still may
require considerable computer time. Often, a hundred or more frequency points are required implying that a
hundred or more finite element problems must be solved.

In an effort to decrease the computational requirements, we have pursued the following idea:
Suppose that we compute the field problem at just a few frequencies and then use these frequencies to give the
solution everywhere within the band of interest. This linear combination of solutions will provide a good
approximation to the field at other frequencies provided that the solution frequencies account for all of the
significant events in the scattering. The question is thus: How can one determine the proper subset of
frequencies in a frequency range that gives the correct overall solution?

To answer this question we have developed an adaptive frequency response modeling procedure.
Essentially, the idea is a simple one: First solve the problem twice - once at a low frequency and a second
time at a high frequency - and then evaluate the residual of the linear combination solution at one hundred
points in between. Then solve the problem again at the frequency that gives the highest residual, form the
linear combination solution with all three solutions, compute the residuals, and repeat the process over and
over. After six or seven iterations, the residuals at all one hundred points are usually within acceptable limits
so that the procedure stops; instead of computing a hundred finite element solutions, we have obtained the
same accuracy over the full frequency range with only six or seven finite element solution. Details of the
adaptive spectral response modeling procedure are given in Appendix F. Although the application in this
Appendix is for modeling one dimensional electromagnetic scattering, no change is required to use this
procedure in modeling two and three dimensional scattering.
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5. CONCLUSIONS

This report provides several breakthroughs in the computation of electromagnetic fields. For the
first time stable finite element solutions of three dimensional electromagnetics problems have been obtained.
Further, a new method of solving two dimensional scattering problems called the transfinite element method
has been developed that is much more efficient than the existing alternatives.

With regard to the issue of stability, until now, no one could be certain with a finite element
solution whether the computed solution corresponded to a real physical field or was nonsense. We have,
however, explained in this report the root cause of these spurious solutions. We have also .developed three
different procedures to eliminate them: (1) use mixed-order rectangular elements, (2) use edge-based tangential
continuity elements, or (3) use derivative continuous C1 elements. Although the mixed-order rectangular
elements were the first to be developed, they are perhaps the least useful because of the inflexibility of
rectangles in modeling complex shapes. The edge-based and the C1 elements are both tetrahedral and do not
suffer from this geometric limitation. Of these two elements, the edge-based element is the most useful since
it is simpler and more efficient than the C1 element.

With regard to the problem of efficiency, two major developments are reported: First, for the first
time finite element solutions of open electromagnetic scattering problems have been obtained by using a
one-step process that we have called the transfinite element method. Prior to the transfinite element method,
scattering problems required that many time steps or many modes be used to produce each finite element
solution. The one step transfinite element method is many orders of magnitude more efficient for solving
scattering problems than the existing alternatives. In addition, it is more accurate since it does not require that
derivatives of the solution be computed numerically but relies on variational principles to set derivative
values.

The second major efficiency improvement reported here is the creation of an adaptive algorithm to
compute the scattered fields over a range of frequencies. Heretofore, the computation of electromagnetic
scattering over a frequency range required that it be performed perhaps a hundred different times; we have
shown that, by adaptively selecting the solution frequencies, the same accuracy throughout the frequency range
of interest can be obtained by using only six or seven properly chosen frequencies. Thus, for scattering
problems in which the response over a range of frequencies is desired, the adaptive algorithm provides an order
of magnitude improvement in the efficiency of the solution process. The algorithm was applied in this report
to the solution of the one-dimensional scattering problems encountered in wavegitide junctions; extension to
two and three-imensional scatterers is straightforward.

Unfortunately, while considerable progress has been reported, there was insufficient time to put all
of the pieces together and develop a working computer code to solve three-dimensional scattering problems.
Although we pursued this research in a logical, methodical manner, one graduate student working for thirty
months could not complete the desired three dimensional scattering computer program. In fact, the nominal
'one' graduate student supported by this project turned out to be three different students in succession since,
due to various circumstances, two students left this project and had to be replaced. However, several major
difficult theoretical problems have been solved. The fact that we did not succeed in solving bistatic scattering
problems from large three dimensional absorbing bodies does not mean that the approach taken here is not a
good one.
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APPENDIX A - MIXED-ORDER RECTANGULAR FINITE ELEMENTS
FOR THE SOLUTION OF THREE-DIMENSIONAL ELECTROMAGNETIC
FIELDS

ABSTRACT

A new method for modeling electromagnetic waves by the finite element method is presented in this

appendix. In this formulation, different orders of polynomials are used to approximate the three different

components of either the electric or the magneti- 7.eld vectors. We show that this procedure eliminates

the problem of spurious nodes that has plagued previous three-dimensional finite element solutions. The

method is applied to find the electromagnetic fields in homogeneous and dielectric-loaded cavities.

INTRODUCTION

The finite element method is often advanced as a useful numerical procedure for modeling high-

frequency electromagnetic wave phenomena. Applied at an early date to solve homogeneous waveguide

problems,1 the method has proved to be extremely accurate and reliable for these problems. However,

when the finite element method was applied to the study of inhomogeneous waveguides, to three-

dimensional resonant cavities and to scattering problems, difficulties in the form of "spurious = modes

were encountered. In the context of numerical modeling, a spurious mode is defined to be a non-pi ysical

solution of the electromagnetic field equations that is computed simultaneously with the correct physical

solutions.

Since the presence of a spurious mode in a numerical solution can destroy the validity of the solution,

much effort has been directed at reducing or eliminating the unwanted behavior. The first approach,

originally suggested by Konrad, 2 is to enforce the electromagnetic field boundary conditions exactly on

the finite element approximation space. This procedure has been used by Mabaya, Lagasse and

Vandenbulke 3 in an EZ - Hz formulation and by Davies, Fernandez and Philippon4 and by Rahman and

Davies 5 in the 3-component H formulation; all three papers report only limited success in eliminating

spurious modes by this technique. Recently, Koshiba, Hayata, and Suzuki6 have shown that rigorous

enforcement of boundary conditions does indeed eliminate spurious modes above the =air line" (i.e. the

line 6/ko 1 in a f/ko plot) but does not work in general below the air line.

The second approach to eliminating spurious modes is to modify the functional in the variational prin-

ciple used to approximate the fields. Working independently, Winkler and Davies7 and Hara, Wada,

Fukasawa and Kikuchi8 have recognized that the spurious modes do not satisfy the zero divergence con-

dition on the electric or magnetic field. Both references suggest adding a penalty term proportional to the

norm of the divergence of the field to the functional. Unfortunately, this procedure does not eliminate

the spurious modes completely. However, as demonstrated in reference 8, the spurious modes are not

stable with respect to the amount of penalty, and can be distinguished from correct solutions by plotting
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the finite element eigenvalue spectra with respect to the penalty parameter. Of course, this procedure is

highly inefficient and cumbersome: each new field problem must be solved repeatedly and all of the

eigenvalues plotted in order to identify the correct solution.

The related procedure to reducing the number of spurious modes was proposed recently by Konrat.9

References 7 and 8 are based on minimizing a functional derived from the vector wave equation with the

addition of a zero-divergence penalty term. Konrad suggests using the vector Helmholtz equation instead

and finds that "... a great number, though not all of the spurious solutions are indeed eliminated.0 This

result is not surprising since the variational expressions derived for the vector Helmholtz equation and for

the vector wave equation with the addition of a unit penalty term are identical in the case of

homogeneous media.

The third approach to eliminating spurious modes in finite element solutions is to restrict the finite

element approximation functions to lie in a reduced vector space. In this view, spurious modes are the

result of using improper functions in the variational procedure. To ensure that only correct solutions are

generated, one must employ only admissible functions in the finite element approximation. This is the

approach taken in this report.

The use of a restricted function space to eliminate spurious modes in finite element analysis was first

suggested by Hano.10 Hano showed that, in two dimensional problems, spurious modes are completely

eliminated by using combination constant-linear finite element approximation functions. These functions

have two interesting properties: (1) their divergence is identically zero, and (2) they are discontinuous at

element boundaries.

In this paper, we derive a set of restricted finite element basis functions for the solution of three

dimensional electromagnetic field problems and show that only correct, physical solutions are obtained

with the new elements. As in the case in reference 10, the functions reported here employ different orders

of polynomial approximation in different directions in each element. However, in addition to being three

dimensional, the approximation functions presented here are high-order, are continuous across element

boundaries and are not necessarily non-divergent.

FORMULATION OF THE EM FIELD EQUATIONS

Electromagnetic wave propagation is governed by the vector wave equations.
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" X I V X E- rk*E (1)
Pr

" X -v VX H - pk (2)

where P.and e, awe the relative permeability and relative permittivity of the material, respectively, and

k0 W20 6e*. At the interface between two dielectrics, the tangential components of the electric and

magnetic fields must be continuous

IaX (E(l) _ E(2)) . 0 (3)

while the normal components are discontinuous as follows

ina f (q1 ) - Em(2) - 0()

isa0 (#In(,) - 4 2() - 0 (6)

in these equations, supeuscripts (1) and (2) refer to media I and media 2, respectively, and 1. represents

the unit normal to the boundary.

b he remainder of this paper, weu&hall use the electric field Eas the unknown. Obviously,a imilar

treatment holds for H. In term of E. equation (4) and (6) become

1aX (-Vx(')--IV XEZ(2)-O (7)

in * (VXE(1 ) - VXE('>) - 0()

We must therefore solve equation (1) subject to the interface conditions (3), (5), (7) and (8).

Konrad' has shown that the Euler equation of the functional

F- (IV X E12 - e k 21Ei')dfl(0

is equation (1) and that the corresponding natural boundary equation (7) is the natural boundary

condition for this functional. If one wants to compute the electiric field inside a cavity containing

variabi.-permeability materials, one needs to minimise (9) in an appropriate function space.

While the solution proem described above has been widely reported in the lDterature,44. 1 -, as nOte

in the introduction, there we serious problem. To eliminate these problems, we need to define the

approximation functions for E carefully.
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A BASIS FOR CURL

To solve for E via equation (9), we must rind a legitimate approximation for the curl operator. An

operator has a domain, a sulispace and a range; it is not enough - as had been done in the past - to

approximate only the domain of the curl operation.

The nulispace of an operator is defined to be the set of functions that produce sero when the operator

acts on it

MA) -(z: A -O0 fo IeV z) (10)
It is well known that the nulispace of the curl operator is provided by the gradient operator

Mcurl) - V # (11)
whene# is an arbitrary sar.

Let us approximate # by finite element basis functions W(z,ijz) over a rectangular parallelepiped

-((zIVz) (12)

The polynomial Z(0^ (z,V,z) is m'th order in the x-diection, n'th in y, and p'th in s. Using the
Kronecker matrix product, three-dimensional interpolation polynomials for brick-shaped elements are

given by

a JkM' - &(kz) ®8 a4nk(,) 0 6aok)()()
where a(') is a one-dimensional m'th order interpolation polynomial and the symbol ®8 denote the

Kronecker product defined in Appendix AA.

Since the derivative of an n'th order polynomial is (n-1)'st order, it follows that the nulivectors of the

curl operator must have the form

E,(SIV IS) - a -~ m~

- a (14)

We may write this in the compact form

where



28

jm-1.a0,)

L0 0 0a16

E VEl (17)

The curl of E in evaluated as

0 4/8s 818 y El,

V X E 0/Osl 0 .J/O z EI(18)

0/O aax 0 1 E[ll
Substituting (13) into (19) gives

VxE-pOM (19)

Where

10 0

L 'Dw Da 01J
where the matricsD are called differentiation matrices and awe defined in the Appendix.

We note that the factorisation in equation (19) is not possible if the same order of polynomial is used to

approximate E, in all three directions.
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COMPUTING THE MATRIX ELEMENTS

Substituting equations (15) and (19) into equation (9) and minimizing with repect to the coefficients

results in the matrix equation

CKC E - * SM E (21)

where K and M are the matrices

K - f-!-Or d17(22)

M m-f e,7- d12 (23)

To evaluate the matrix elements in K and M, it is sufficient to evaluate the integral

- fa,.,.'a ,.,.r (24)

Substituting equation (13) into (25) gives

G- (IILL)J(a"() ® E() ® (x))T (af() ® a(4) ® (.())dfdCd. (25)

where L., LY and Ls are the dimensions of the brick element, and a (and X are homogeneous coordinates

in the brick. This can be converted into

G - ( 1/L LL )') @7(') 0 (20)

where

7(11 - fa'*X() 3( ) (27)

(28)

7(2)..174) 2 Is P

To evaluate the finite element coefficient matrix for one element, ome therefore seeds to form the

inatrics K and M using equations (27) and (28), evaluate C by using the values in the Appendix, and pre-

and post-multiply K by CT and C, respectively. The contribution from each element is combined with

the other elements in the grid to form a large, spaun matrix eigenvalue problem. This eigenvalue

problem is solved by using established techniques for the eigenvalue k0
2 and eigenvectors ].
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COMPUTATIONAL RESULTS

A computer program has been developed based on the above formulation to solve for the

electromagnetic fields in resonant cavities. The program allows finite elements of mixed orders to be

assembled and solved for complex three-dimensional geometries.

EMPTY CUBIC BOX

The solution provided by the present method is first tested with the analytical solution of an empty

cubic cavity of I ms. The cubic box is divided into 2x2 elements. The rmult& obtained by using

constant-bilinear (m - n - p - 1), linear-biquadratic (m - n - p 2) and quadratic-bicubic (m - n -

p - 3) elements are shown in Tables 1-3. A one-to-one correspondence exists between the approximate

eigenvalues and the exact ones. Since no spurious modes are produced, the approximate eigenvlues are

easily identified. The results also show that the dominant eigenvalue is approximated reasonably well even

with a small number of elements.

Solutions obtained by using high-order elements are seen to be much more precise than is the case with

constant-bilinear element solutions. The reason for the increased accuracy is twofold: (1) Higher-order

polynomials are more accurate than low-order ones, and (2) higher-order elements are continuous across

element boundaries while constant-bilinear elements are not.

DIELECTRIC-LOADED BOX

Our computational procedure has also been applied to solve the dielectric-loaded cavities shown in

Figure 1 and the results compared with those obtained by other methods. In this case, the magnetic field

in solved subject to natural boundary conditions iX(VXH) - 0 oan perfectly conducting walls and

Dirichlet conditions 18xH - 0 on symmetry planes. Comparison of our remults with previous solutions

is shown in Table 4, where the cavities are divided into 2xx linew-biquadratic elements. Again, the

dominant eagenvalue is approximated well, despite the fact that only 8 elements are employed.

NUMBER OF ZERO EIGENVALUES

The number of the unknowns and the number of sero eigenvalues computed depends not only on the

number of elements employed but also oan the type of boundary conditions imposed. There are two kinds
of vector Dirichlet boundary conditions: One is a tangential boundary where the tangential components

of the field vector are set to sero; the other other is normal boundary where the normal component of the

field vector is set to sero. Empirically, we find that the number of sero eigenvalues for a box divided into

a x b x c elements is given by
,,um ber - (89a + a - nXte b + a - ,bXt*c + - ne) 1 (30)

+ number of disjointed tangential boundaries
where t -- 1 and a - 1 for constant bilinear elements, t - 1 and a - 2 for linear biquadratic elements, t

- and a - 2 for quadratic-bicubic elements, and a&, nb and nc ae numbers of Dirichlet boundary
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conditions imposed on the walls normal to the x, y and s directions, respectively. Enforcing boundary

conditions exactly does reduce the size of global matrix and, consequently, the number of zero eigenvalues.

We have not yet been able to explain the empirical formula in equation (30) by theoretical means.

CONCLUSIONS

Three-dimensional electromagnetic field problems may be solved by using mixed order rite elements to

approximate the vector field. In this approach, a consistent numerical approximation in made for the

domain, range, and null spaces of the curl operator. Such a consistent approximation in the solution of

the vector wave equation eliminates the problem of spurious modes that had plagued previous solution

procedures.

A limitation of the present formulation is the restriction of the element shapes to be rectangular

parallelepipeds. For problems involving complicated shapes, tetrahedral or isoparametric elements would

be preferred. The use of such elements with mixed-order polynomial basis functions is presently under

investigation.
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APPENDIX AA - RECTANGULAR BASIS FUNCTIONS

To see how approximation functions are formed for bricks, rst consider the two-dimensional case. An

arbitrary rectangular reference element is mapped onto the unit square by the transformation
- (z - JUR)LS (Al)

C - (- vR)/L, (A2)

Two-dimensional basis functions may be obtained from one-dimensional functions by using the

Kronecker matrix product.

Definition:

If A in a x m matrix a nd B is a pxq mix, then the Kronecker matrix product of A and B is denoted

by A & B and is the npxmq matrix

A@B- .11B 12B .. . 1  B

Kronecker matrix products satiy the following useful identities 14

(I AD(B+C)-A®(DB+A@C

(ij) aA OB-auj(A®0B)

(iii) AB@ CD-(A&C)(9D)

(iv) (A @ B)--A "' J@ '

(v) (A0B)T=AT0BT

In general, one-dimensional n'th order interpolation polynomials are defimed w
6+1

ag- ]I (M4)

where the are the interpolation sodes. Using the Kronecker matrix product, two-dimensional

interpolation polynomials are given by

- ® (AS)

Now consider approximating an arbitrary function 1(cf) in terms of the finite element approximation

functions. We may write this w

- km.a'k~ (MS)
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where 0 is an m by a matrix of values st the interpolation nodes. Equation (A7) is converted into the

standard matrix form

#CO- (lr.e)- (A7)
by defining a vector operation called wee in the following manner:

A

21'

where A, is the i'th column of the matrix A. The operator vec and the Kronecker product are related by

the identity

we ABC - (C7 ® A) weB (Ag)
The vec of a scalar is simply itself; therefore, taking vec of both sides of equation (AS) yields

#(C) - (4kc) e0n')) . (A 10)
where

Weco (All)

Three-dimensional finite elements are generated by an analogous procedure to that used in two-

dimensions. Approximation functions for brick-shaped elements are given by the equation

80m - a(kr) (9 3-4"') (& a® .
(A12)

where (w) are homogeneous coordinates in the brick.
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DIFFERENTIAL MATRICES

One-dimensional differentiation matrices are defined by the equation14

where D(*) is the n by n+1 differentiation matrix. The polynomials (1)(n) in equation (131) are of

one order less than that of e()(r) because the derivative of an n'th order polynomial is (n-1)'st order.

Evaluating both aides of equation (BI) at the (n-i)'st order interpolation nodes .i(u),i ,

provides the elements of the differentiation matrix s

D -D -I idc It s z

Performing the indicated operations with the equispaced node interpolation polynomials gives the

numerical values

D(1)1 1]

D(2) .- L -. 1

D(3) - 05.5 9. -4.5 1.

.125 -3.375 3.375 -. 125

-1. 4.5 -9. -5.5

Note that the matrix D has the following anti-symmetry property

() -D;s) (B4)

To extend the above result to two-dimensaons, we need to evaluate

a a

_ we-rind t)at

Thus we find that
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)(,C -4 kCc
PB)

where

Dc-Dm)( (B7)

Similar results hold for derivatives in the C-direction and for three-dimensional elements.
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Table 1. Eigenvalues of a homogeneous cubic cavity obtained by using constant-bilinear elements.

appro-eigenvala. modes met-igenvalue

0 8.9817$4e-16
I .2400000e+01 (1,19) 107392

2 2.400000.+oi (1,0,1) 19.7392
3 2.400000e+01 (0,1,1) 19.7392
4 3.800000e+01 (1,1,1) 20.8088
G 3.80O0O~e+01 (1,1,1) 29.8088

Table 2. Eigenvalues obtained by using linear-biquadratic elements.

inpprox-eigenvalue =*o et-ggenvalue

0 -1.114684.13
1 -9.570122e-14
2 -7.071401o.14
8 -. 372880.-14
4 -4.773965e-14
5 -3.175238o-14
6 -1.5765179-14
7 2.220448e-16
8 1.Oss78o.+Ol (1.1,0) 10.7302
* 1.0876.40 (1,0,1) 10.7302
10 L.06860+0 (0,1,1) 10.7392
11 2.061547.+01 (1',,) 290068
12 2.08647.+O1 (1,.1) "Am06
13 4.004385.4.01 (2,1,0) 40-3480
14 4.004385.401 (2,0,1) 40.348
15 4.094385."1 (1,2,0) 40.3480
16 4.004.01 (1,0,2) 40.348
17 4.094385.4.01 (0,2,1) 49.3480
IS 4.9%386e+01 (0,12) 40.3480
10 8.026624.4-01 (2,1j1) 50.2176
20 5.026824.4.01 (1,2,1) 50.2176
21 1.02624.401 (1,1,2) U0.2178
22 5.047000."1 (2,1,1) 50.2176
23 5.047009e-+01 (1,2,1) 50.2176
24 5.047000.401 (1,12) U0.2176
is 8.000000.4.0! (2,2,0)
26 8-000000e+01i (2,0.2) 7 j
26 s-oooooo.+oi1 (0,2,2) 78.9168
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Table 3. Eigenvalues obtained by using quadratic-bicubic elements5. The
number of zero eigenvalues is equal to 64.

apr-s uslu mwdw et..ipavalut

64 1.074101.401 (1,1,0) 10.7302
65 1.74101.+01 (1,0,) 10.7392
68 1.074101.401 (0,1,I) 10.7302
67 2.06089.01 (1,1,1) 20.6m8
68 2.060601.401 (1,1,1) 29.608
0 4.087005.401 (2,1,0) 40.3480
70 4.087095.401 (2,0,1) 40.3480
71 4.087095.401 (1,2,0) 40.3480
72 4.087005.401 (1,0,2) 40.3480
73 4.087090.01 (0,2.1) 40.3480
74 4.087005.401 (0,1,2) 40.3480
75 3.073327.401 (2,1,1) 50.2178
76 5.073327.401 (1,2,1) 50.2176
77 5.073327.4-01 (1,1.2) 50.2178
73 5.073813.+01 (2,1,1) 50.2176
70 6.073613.401 (1,2,1) 50.2176
60 5.073813.401 (1,1,2) 50.2176
$1 6.000000.+01 (2,2,0) 76.0968
62 I.ODOOoo+oi (2,0,2) 78.0568
as 8.0000000+01 (0,2,2) 18.9568
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Table 4. Dominant resonant frequency K0 a in Figure 1.

aviy-pyca Re,1 -Rf16 1ksmto

Fiz. 1& 2.5829 2.4292 2.5701 2555
IFit, AbI 3.447 3.6387 9,5783

Figure 1. Dielectric loaded box.
=16, b/a =3/10, c/a = 4/10, t/a = 1/4, s/b = 7/12, u/c 3/8
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APPENDIX B - EDGE-BASED VECTOR FINITE ELEMENTS FOR
SOLVING THE ELECTROMAGNETIC WAVE EQUATIONS

ABSTRACT

This appendix examines the requirements on finite element approximation functions that must be

satisfied to provide consistent solutions of electromagnetic wave problems. We show that continuity of

the tangential component of the electric or of the magnetic field is required in the variational procedure

but that the normal component of the field need not be continuous. We present a new triangular finite

element that provides for only continuity of the tangential component of the field. In this element, the

tangential components of the field represent the unknowns to be determined and are evaluated separately

on each side of the element. The finite element analysis based on this new element leads to the complete

elimination of the spurious modes. Wave propagation in dielectric-loaded waveguides is examined to test

the validity of the new vector element. Extension to three-dimensionals is made by requiring that the

tangential components of the field interpolate at the edges of tetrahedra. This 3-D vector element is

shown to model three-dimensional cavity problems correctly without the presence of spurious modes.

INTRODUCTION

While the finite element method is known to be a powerful tool in the analysis of many physical sys-

tems, its application in electromagnetics has been limited by the presence of spurious or non-physical solu-

tions in the computation of electromagnetic wave problems. Several investigators have attempted to

eliminate these spurious nodes by either employing a penalty method or by strongly imposing boundary

conditions. However, all of these attempts have only reduced the appearance of the spurious modes to a

lesser degree. Recently, a rectangular mixed-order element has been developed based on the consistency of

the orders of the polynomials used among the three components of the field vector in the three inde-

pendent directions 1,2. With these elements, the problem of spurious modes is eliminated. However, the

elements reported are rectangles in 2-D or rectangular parallelpipeds in 3-D and hence provide only a

limited degree of geometrical flexibility. An extension of this concept to triangular or tetrahedral finite

elements is required to model many problems efficiently.

The approach reported in reference [2] can be traced to the mathematicians Raviart and Thomas 3 and

to Nedelec4 who were the first to seek vector solutions in the range space of the operator. These resear-

chers have presented a vector finite element that approximates either the normal or the tangential com-

ponents of a vector field and have established also the convergence of the new elements. However, the

elements reported in [3] and [4] are not interpolatory and hence are difficult to apply.
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In this paper, we take a different point of view: We examine the variational principle corresponding
to the Maxwell equations and show that electromagnetic field problems are best solved not by using three

separate scalar approximations for the three components of the field, but by using new vector elements

that require only the continuity of the tangential component of the field. With this new element, the
normal component of the field is allowed to jump across the material interfaces. Further, we improve

Nedelec's tangential elements by writing the field vector explicitly in terms of point values. This inter-

polation property makes the process of imposing the necessary continuity conditions between vector ele-

ments easy to program and provides a practical and extremely reliable approach for solving electromag-

netic field problems.

VARIATIONAL FORMULATION
ELEMENT MATRICES S AND T
THE ASSEMBLY OF GLOBAL MATRICES

Variational procedures for solving electromagnetic field problems by the finite element method were

originally proposed by Konrad12 and used subsequently by others1 3 1 5 . While the essence of Konrad's

derivation is correct, the interface between elements were not examined in detail. This oversight has led
to the appearance of spurious modes in finite element solutions. In the following we examine these equa-

tions in detail, paying particularly close attention to the interface requirements on the approximation sub-

space.

The basic equations that govern electromagnetic fields in source-free, time-harmonic regions are the

Maxwell equations

V x = - (1)

V X P = J . (2)

We note that since the divergence of the curl of anything is zero, Equations (1) and (2) imply that
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v • ,7 =0 (3)

V • E =0 (4)

The substitution of from Equation (2) into (1) and of 71 from (1) into (2) yields the vector wave

equations

1 kTV x -V x =-7? (5)

V X -V X 7 =- 7 (6)

where k2 
= w2 p. In view of the similarity between Equations (5) and (6), the following analysis will be

presented in terms of the vector 7; the parallel development for the vector 7 is obtained by making the

substitutions . -. 7 and p - e.

INTERFACE CONDITIONS

The interface conditions that must be satisfied by the electric field P are that its tangential com-

ponent is continuous

Tn x Ei = T n x 2 (7)

and that the normal component of the flux 2 = e is continuous

T n o IPI = 1 n * f • (8)

For the magnetic field 7?, the corresponding interface conditions are

T n x 71 = Tn x T12 (9)

Y, * 7 = T n * 272 (10)

Equation (10) may be expressed in terms of the electric field by using Equation (1). The result is
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T1 n x P -- T n x P (12

Adopting an (n,r,X) coordinate system, where Tn is normal to the interface and I1 and F, are parallel to

it, Equation (11) becomes

,E - aE aEX  aE (12)

~~7r _x)' a i)a

Notice that Equation (12) only involves the tangential components and the tangential derivates of P

We therefore arrive at the important result:

Continuity of the normal component of magnetic flux 7 = pH is ensured by setting the tan-

gential component of the electric field Pt to be continuous.

There is of course the corollary:

Continuity of the normal component of electric flux t - e is ensured by setting the tan-

gential component of the magnetic field T1 to be continuous.

It follows from the above that if we impose the continuity of the tangential components of E and R?

Equations (7) and (9), directly then continuity of the normal components of the fluxes, Equations (8) and

(10), are automatically ensured.

In an E-field solution procedure, we must express the tangential component of the magnetic field in

terms of the electric field. Using Equation (I), the result is

II--n (V X Ed) --- Tn X - (V X r2) (13)

Evaluating this by components yields the two equations

&EJ 'En) 1 M8r - En) _(14)
Pl1(4n a P2 in r2

'En aEX I E aE X
_T _= _(i___ -(15)

Provided that Equations (14) and (15) are satisfied, Equation (8) will be satisfied.
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THE ENERGY FUNCTIONAL

Consider the functional

f (,V x )2a _ f p-2-d2 (16)

We shall show that this functional may be used to solve for the electric field in wave problems provided

that the tangential component of P is made continuous.

To minimize F ), let E = Ee + e " where E is the exact solution of the wave Equation (6), c is

a number, and T is an arbitrary vector function. The first variation of F(P) is

WFr) +f 4-)

f (JA f r) ( ).¢ - do2 (17)

By integrating the vector identity

V X (X ) ('V x (18)

we find that

1 (7 X T) u' fS- [(V X 3)• - a * (V X df2d . (19)

Thus (17) is converted to

+ x V x = WS. (20)

Since E satisfies Equation (6) exactly, the volume integral in (20) drops out, leaving

SX 9 (21)
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Finally, setting the first variation of FIE) equal to zero yields

f (T x Th ) dS=- 0. (22)

Equation (22) provides the natural boundary conditions for the functional.

NATURAL BOUNDARY CONDITIONS
I

Evaluating Equation (22) by components yields

f (CHx - CH)dS = 0 (23)

In terms of the electric field 1 this is

aE ' 8E n ( E n aEX
1a) an " j

On exterior boundaries, if we set the tangential components of P equal to a given value, then C, and C)

are zero and Equation (24) is satisfied. On the other hand, along boundaries where we leave C. and C) to

be arbitrary, we will automatically obtain a solution for 7 that satisfies

T X 7 = o . (25)

On interior boundaries, if we impose continuity of the tangential component of then we will have that

Cr,1I = f,1 2

ClI = CX 12 -(26)

For boundaries, Equation (24) yields

n -~ nE, aE,. 1 ,E OE

S a E n)] (27aE)ax ")w d:,,s 0 (27)

.. . .-- - -- i l / A,ir -im _im -A) -nl min ni llllln ll n IIIX
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Since , and ) are arbitrary on interior boundaries, Equation (27) yields exactly the correct interface

conditions (14) and (15).

We note that the continuity of the normal component of E is not required in the above formulation.

In fact, imposing continuity on the normal component of P is wrong because 1-n e E is discontinuous at

material boundaries. The beauty of the procedure presented in this report is derived from this fact: if

one allows the normal component of the electric field to be discontinuous imposing continuity of only

tangential component, then the amount of discontinuity in the normal component is automatically given

by the natural boundary conditions in the variational principle.

TANGENTIAL CONTINUITY

It has been the usual practice in the finite element solution of vector field problems to create a scalar

approximation for each vector component separately. In view of the above analysis, we must do some-

thing entirely different: we must generate vector-valued finite elements that provide continuity of only

the tangential component of the field. No finite elements having this property have been published

previously.

In the two-dimensions, the idea is the following: consider the arbitrary triangular finite element

presented in Figure 1. The three unit vectors 1 i 1,2,3, parallel to the three sides of the element

are

Y, ( + cr) (28)

where bi and ci are the usual parameters

bi - yil - yi2 (29)

c. x i2 - zil (30)

and hi represents the length of side i

h b.2 + c-2. (31)
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We note here that the h. may also be written in terms of the triangle vertex angles 0. as

h 2

i - A(cotoii + Coto 2 ) (32)

where 4 is plus or minus twice the triangle area

A ci 2bil - cilb2 ' (33)

The dot product of Ti and the field vector T evaluated on side i is the tangential component of P on that

side. It is the quantity that we wish to make continuous for i = 1,2,3.

Now note that the tangential component of E evaluated on side i is a o'--dimensional scalar and can

therefore be approximated by one-dimensional N'th order interpolation polynomials

N
SE- 'i (34)

k=O
i i

where ek are coefficients and are N'th order interpolation polynomials. We note that since triangles

have three sides, and since there are (N+I) parameters on each side, that there are 3(N+l) coefficients
iCe
k

The may be written in terms of the Silvester polynomials

P()= 1

w = ( . • ,) m 1 (35)

as
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13

So B 43 2 3 2 3

Figure 1. (a) The unit vectors for an
arbitrary triangle.

(b) The interpolation nodes corresponding to T. * R for the cue N - 2.
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For example, if i = 1 and N = 2, we obtain

0= 2(2 2 - 1)

2= 3 (2-3 - 1) (37)

The location of the interpolation nodes corresponding to these polynomials are indicated in Figure 1(b).

VECTOR BASIS FUNCTION

Finite elements possessing the desired tangential continuity are provided by the following theorem:

Theorem:

Let be approximated by the vector

1 3

ih { 2  I i-i

--1+Ah jc. Q N- I c dtN (38)

where

N-Ii
'YN- I

k=O

i ' .

IN =- eN )N" (39)

Then

N

E, ., , e . (40)

kr0

Proof:
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Wee will show that (40) is true on side 2; the proof for sides 2 and 3 is very similar. Evaluating

1" * gives

j - c1b b + bic1~

'1Q  '  "= Cl3'IN-1 - Clb2'IN- blC3'IIN- I bC2'YNI

h2 2 21

1 h3 3cb 3 
( 1

23

On side 1, IfN  --0 and "tN-1 I 0 by construction. Therefore on side I only the top row of Equation
(41) survives. However, since Clb, - bit3 A L and - Clb 2 + blC2  4, Equation (41) yields

711 (428ide [o 1 - "N- 1 + IN (2

which is the same as (40).

THE CASE N--I

For N= 1, we find that 00 - i and i fl i2 •Thus (38) becomes

3 h.{

' - " Tz E - eoi2l --elbil~i2

3 h .

idil

Since --- (a, + bo x 4- cy), we can rewrite this as

' - (I+ gzx + hzy ) + - (fY +gyx + hV Y) (44)

where

1 h3 I I l
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3

h (eob. 0a.l - elb :a=
8==I

3

h 0 (e 1 - e ib1 b 2 )

i=1
3

i 
(

h1  - hi (eobi 2 . - ebi ca 2 )

i=1

o ii ii 2

fy = h,(eoici2ai -- lilai2)

3
hi - i c

Thus

-E = -. (gx + h) (47)

1

x 0 (g .) (48)

and

J V X~2d~-~~~2  (g2 - 2ghz + h 2) (49)

THE CASE N o

Although N = 0 is not permitted in Equation (38), zeroth order tangential continuous finite elements
i = --= e imay be obtained by setting e ° -= el in Equation (43). The result is
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i=

+ e'hi (c-22. 1 -A c.1i 2) (50)
i=1

In this caseg. - O, h = Oand h. g- g and (44) becomes

1, 1
= -- ( + gy) + , (i - gx) (51)

For this element we find that

V P = 0 (52)

V X =- 2g z/A (53)

and

~2 ,,J IV X pl 2 df2 2-f v  7 1d = (54)

3-D VECTOR ELEMENT

We define the tangential component of the field vector at side i to be positive when it is parallel to the
unit vector 1i . However, to have a consistent sign of the field vector, one has to assign the tangential

vectors globally, not locally. An example of such vector mesh is shown in Figure 2. It is, of course,

possible to have other vector mesh patterns besides the one shown; these patterns are related through a

group transformation. For example, the matrix P transforming the vector (el , e2 , e3 ) into (-e', e2, e3 ) is

defined as

(-00
(e1 , e2 , e3 ) P = (-e l , e2 , e3) where P = 010

(001/ (55)

The corresponding element matrices on the transformed mesh are given as follows:
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Si = PSP
T' = PTP (56)

One can prove that the following field vector preserves the continuity of the tangential component.

x Fi-t, [ij

i<j

1 4

i<j

where

N-1

IN- k k
k=O

b-= (--1)i1 jk 'I

S()i+1 ZA Z
x A x ki

IYJ* YkI

, = j -- k

Yjk Zj-k
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zj --- z-z t
jik Zj :- k

1•2 2 2,
'J' = (Xik+yik+z5)k (58)

and V is 6 times the volume of the tetrahedra. Then
N

e j (5o)
k--O

where 1.. is the unit edge vector on the edge ii, and

niXP' Ie,=o = nxP 1 ,=o (60)

where (1) and (2) indicate two adjacent tetrahedra with a common face i, and n. is the corresponding unit

normal vector.

THE CASE N =0

In this case,

E = jE [bici - b ic) ei

F ' ,C e

Let us define

e5 = (e12, e13, e14, e23, "24, e34) (62)

Then, the matrix elements of S are

2
(S)u,ki = - - -1k, Sign (ij) Sign (ki)

(X$' Xk- + Y'J Yk- +  ZS'7 zk-) (63)

where the function Sign (ij) = 1 when i-j-J* 2 , and is -1 otherwise, and ij means the complementary

index of ii e.g., 12=34, 13=24, and 34=12.
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And the matrix elements of T are

1
120-V (W K - Kil - Vii W K) (64)

Where W.. 2 when i = , 1 otherwise, and

K..- bib. + cc. + did. . (65)

APPLICATION TO DIELECTRIC-LOADED WAVEGUIDES

I. THEORY

Assuming the wave travels in Z direction, one can write K as:

= e t(TY + j7,z(zT,Y) )eijz J.4z (66)

where 7t ezz + e Y y and 0 is the propagation constant.

Substituting (66) into (16) yields

2 r1- 2 + 1- + 2

F = f 2 i "Il + IV×e"I 2 + 1VeI 2 
- 2/e ee B

-f (R' l2 + Il 2) ' . (67)

Defining

-e =T e7I 2 dt2
z Z -Z z

e~ SZ • - fex

Se + C

gi ae (6)

gives
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F = iKe -k 2 iMe (70)

where

K = - j S, seI (71)

~ Pt " )

and

M 0T t .} (72)

The first derivative with respect to F' gives

K e = R 2  M e (73)

I. RESULT

Taking a rectangular waveguide half-filled with dielectric, as studied by Konrad, as an example, we

approximate the transverse component of the field vector using zeroth-order vector elements and the lon-

gitudinal component of the field vector using first-order scalar element, as shown in Figure 1. Unlike

Konrad's result, spurious modes do not occur either above the air line or below the air. It is interesting

to note that Konrad had incorrectly identified some spurious modes as physical ones.

APPLIED TO A CAVITY PROBLEM

A unit, empty cubic cavity was modeled by the zeroth-order 3-D vector element. As shown in Figure?

the agreement is reasonable. The result also shows the convergence as the mesh becomes finer. Opposed

to the result obtained from the traditional method, the convergence is simply destroyed by the fact that

the number of spurious modes increases with the number of the degree of freedoms. We also model a

dielectric-loaded cavity and the result is again reasonably good.

THE EVALUATION OF S AND T"

The S matrix is related to the calculation of

2VXE1 & 2 (74)

where

3

g =h- ie' (75)
i-1



57

Let us define

h = (hi h2 h3) and e e 2

(te (76)

Then,

g =-h e (77)

and

g2 = h hhe (78)

Since

hIs './(cot 0i1 + cot 0i2) (79)

h can be written as

t \'A (80)

where n = m 2

(81)

and

m i = V'ot 6 i1 + cot 0i2 (82)

Substituting Equation (81) into Equation (80) gives

2 = A m n- e (83)

From Equation (74), S" is

S =2 . (84)

On the other hand, the T" matrix is related to

3r 3  (5
p2 df2 = f([7 he' t (b. f. -to 2 +[ h'.(c iAe 2 )12)d,. (5

The first term can be written in the following format:
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3

[ hiei(bi2.il - bil i2)]2  AiKis (86)

where
m ml(b 3 2-b 3) 2  mIm 2(b 3  2-bl 3 ) mIm2(b 3 2-b2 )-

x(blC3-b3 A) x(b2 l-b 1 2)

KI  I 2m2m2 (b1 C3-b 3 C1 )2  m 2m 3 (b1 C3-b 3 C1 )

x(bj1 j-bl)

Inm3mIn3(b2l-b2) 2 J (87)

The integral of K1 is
2 7

mlm(2b 3-2b b2 +2b)

A 2 2 2f 1  f?=- m 1 -b~ 2 2 3  msm 2(2b1 -2b 1b3+b3)

m3ml(-2b 3 bl-2b-) m3ms(-2b 3 bs-2bl) m m (2b,-2b~b +2b (88)

By the same token, the second term becomes

3

[ 1 hiei(CiSKil-'il1 i2 )]2 A KS2 (89)

and the integral of K2 is

m In 1 (2c -2c C +2c)

- 2 2jK l - m(2- 2 2 3  msms2(2cl-2ClC3+c3 )

In m (-2c3 c -2c ) m m 2(-cc 2-2c ) mm 3 (2cl-2lcc+2cs) (90)

By applying the identities

b.b. 14-C~e. =

cot 6 i2 i 7 il (91)

and

2 2
bi+ei = A

(cot il+cot 0 i2)  (92)

to the sum of and , Eq. becomes
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limlm 1 [2m~m1+6 cot 0 1J

e m~m [2 cot e3-2m1l 3  m m [2m m +i6 cot G2 e

m ml[2 cot e2-2m m] m m [2 cot 0 -2m mm[2(33 -22 32 1 1 1  m3m3[M 3M3+6 Cot 03]1g3
therefore,

3. (94)
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APPENDIX C - C' QUADRATIC INTERPOLATION FOR DERIVATIVE
CONTINUOUS FINITE ELEMENT APPROXIMATIONS

ABSTRACT

A highly efficient procedure for generating smooth surfaces over arbitrarily spaced data points is

developed in this appendix. The procedure uses quadratic polynomials for the construction of derivative

continuous surfaces rather than the cubic polynomials generally employed previously. It is based on a

subdivision procedure, dividing each triangle in a triangulation of the data points into six subtriangles

and fitting a quadratic Bezier surface patch over each subtriangle. It requires only function and first

derivative values at the data points and is easily implemented by means of simple formulas for the Bezier

coefficients. Since two-dimensional quadratic polynomials contain only six terms, while ten terms are

required to evaluate a cubic, the new procedure provides a major improvement in the efficiency of al-

gorithms for representing electromagnetic fields.
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INTRODUCTION

The generation of smooth surfaces that interpolate to prescribed values of a two-dimensional function at
an arbitrary point set is one of the central topics of computer-aided geometric design (CAGD). Early
work focused on the Coon's patch as the preferred method of generating ' surfaces over rectangular and
triangular grids Ill; more recently, because of their easy geometrical interpretation, techniques for
generating smooth surfaces based on Bezier polynomials have become popular21.

To date, however, the preponderance of work in this area has been based on the considerable flexibility
of cubics for providing smooth curves; relatively little work exists for using quadratic polynomials to
achieve similar results. While the cubics developed previously using either the Coon's patch or the Bezier
technique provide excellent results, they have three drawbacks:

(1) they are relatively complicated;

(2) they require either that a *twist condition" be satisfied at the data points i or that mid-side
derivatives be given 2; and

(3) compared to quadratics, they are expensive to compute.

We examine here the requirements for ' interpolation by quadratics using the Bezier technique and
show that a simple, efficient and accurate algorithm exists for generating such surfaces. The algorithm
requires only function and derivative values at an arbitrary set of points; no mid-side or twist derviatives
are employed. Further, the new algorithm is considerably faster for drawing smooth surfaces than are
algorithms based on evaluating cubic polynomials since fewer operations are required to evaluate
quadratic polynomials than is required for cubics. Indeed, it may be argued that the new procedure is
optimal for C1 surface interpolation since quadratics are the lowest order polynomials for which smooth
interpolation is possible.

The pioneering work on C interpolation by quadratic polynomials is by Powell and Sabin[31. They
showed in 1977 that C surfaces could be produced over triangular data points by subdividing the original
triangles into either six or twelve subtriangles. Their procedure has, however, not been widely employed
due to its complexity. Sibson and Thomson 4 have also introduced a quadratic C1 interpolation procedure
but their method is limited to treating only rectangular arrays of data points. The method developed in
this paper does not have any geometrical restrictions and therefore is ideal for design purposes. The
potential of quadratic surface patches in CAGD has also been recognized and is discussed in a recent
paper by Sederberg and Anderson6 .

BEZIER POLYNOMIALS

The Berstein-Besier approach to surface modeling is well known and is described in some detail in a
comprehensive review paper by Bohm, Farin and Kahmannie l. With regard to surface modeling, Bezier
polynomials provide the important property that &' continuity can be ensured between triangular patches
by requiring that each pair of adjacent subtriangles in the Bezier net be coplanar. This is both
conceptually and computationally a simple task, and has therefore great appeal for constructing methods
of smooth interpolation.

For quadratics, the Bernstein-Bezier surface patch over triangles is defined as follows

J~z~2) j A*1 2~)-i~~k '' (1)
i+j+k,2
ij,k > 0
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where the i are the homogeneous or barycentric or triangle area coordinat. of projective geometry 17'
and the coefficients 0ii are the control vertices of the Bezier net. Note that unlike the case with ordinary
Lagrange interpolation, the coefficients 0ia do not necessarily provide values of f(z, V) at the nodal

points; rather, it can be shown that the surface patch will lie in the convex hull of its Bezier netl6 .

The constraints on the control vertices 0i.A in neighboring triangles to ensure derivative continuity
across the interface are derived in Reference 2. The geometric interpretation of these constraints is
illustrated in Figure 1. In order to have J continuity between quadratic Bezier patches, each pair of
subtriangles of the Bezier net that shares a common boundary - the two shaded quadrilaterals in the
figure - must be planar.

SUBDIVISION PROCEDURE

Consider an arbitrary set of points P on a plane, as illustrated in the example in Figure 2(a). This
point set may be triangulated in a number of ways; we have employed Delaunay triangulationl8l to
illustrate a possible subdivision in Figure 2(b), however other triangulations may be employed if desired.

We assume that position and tangent plane data are given on P. Let Q represent a new set of points
chosen arbitrarily so that each triangle T. contains one and only one point Qi, i-1, - • - , nt where n,
represents the number of triangles in the mesh. By connecting each point Q, with the associated triangle
vertices and with the three neighboring triangle interior points Q,, each interior triangle is subdivided
into six triangles as shown in Figure 2(c). Boundary triangles are subdivided into six by adding one point
Bi at an arbitrary location along each exterior triangle boundary.

Consider a typical pair of interior triangles as illustrated in Figure 3. The quadratic Bezier net further
subdivides these triangles as indicated. According to the requirements for derivative continuity, the
Bezier net of each of the shaded areas must be planar in order to achieve Cl continuity. The question is:
Is it possible to construct such a figure, keeping in mind the interconnections between these and other
elements?

With regard to the original triangle vertices, it will be noticed that the plane of the Bezier net
surrounding each vertex is completely defined by the data specified at the vertex. This leaves three
shaded regions to examine: Two triangular patches centered on the interior points Q, and Qr and a
diamond-shaped region efgh spanning the interface between the elements.

The triangular patches centered on Q, and Q. are easily made planar by requiring th.. its three edges
form straight lines and that the points Q lie in the plane of these lines. The conditions for the region
efgh at the center of the common triangle edges to be planar are more complicated and are provided by
the following lemma:

Lemma. Let A, B, C and D be any four points in three-dimensional space as shown in Figure 4.

Further, let e, f, g and h be points along the line segments M, M, Z and D respectively, having

the properties that the points e and g divide the line segments M and 7T in equal ratios.
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. . . . (2)

and that f and h divide and ;M in equal ratios.

.P -2 (3)

Then the four points e, I, g and h are coplanar.

Proof: Without loss of generality, we may adopt a Cartesian coordinate system such that A is at the
origin, B lies on the z axis and C lies in the (z,y) plane. Then the coordinates of A, B, C and D are

A = (0,0,0)
B = (6,0,0)
C = (C,Co)
D - (d,d,d,) (4)

Vectors to the points e-h are given by

-"_ 1z + (1--"t1)7

- -1c

- ( 2gI+b--12b)T+ 'I-,

-IZ + 1-,7

+(d3 -dd)3)T,

r - - ,2d,+,%d 2r,+,ydT. (5)

We need to show that the vector e g is a linear combination of the vectors eand K
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eg 07 + #e (6)

The x, V and z components of equation (6) are

c I+d -'Td - 7b = O(-Y2c+b- 2b- -f,)

'iIc2 +d2-'Y1d2 = a '12C2 0/2d2

d3 -- yld 3  -0,1 2d3
•  

(7)

Rearranging yields

(-y-a72)c + (1-+ 1-- :)d1  (--Y1 -a+aY 2 +a-v1 +,8-)b 0

(-'y-a-y2 )c2 + (1--yI-8-y2)d2  = 0

(1--0 (8)

Since the e. and d. are arbitrary, it follows that

"71 2

1 - l+e2 (9)

Solving this for a and # gives

0 '7 1/-/2

- (1--Yl)/y2 (10)

Since b is also arbitrary, we must also have that

0 0 (11)

The reader may verify that equation (10) also satisfies equation (11).
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By construction, the quadrilateral ABCD satisfies the requirements of the above lemma. It follows that
C' continuity is achieved for any location of the points Q, by requiring the shaded regions around the

original points P. and around the interior points Q, to be planar, and by requiring the Bezier node E to
lie in the plane of the region egh.

A FORMULA FOR C' QUADRATICS

We now proceed to derive a formula for the Bezier coefficients 0, on the subdivided grid. For this

purpose, consider the triangle T shown in Figure 5. In this figure, Q is the interior point in triangle T
and U, V and W are the interior points in the neighboring triangles. The points Q, U, V and W may be
expressed in terms of the Barycentric coordinates of triangle T as

Q (q1,q 2 ,q3 )

U (uru2 ,u3 )

V (Vr,,v 2 v3)

W (Wr,w2 w3). (12)

Since the points U, V and W are outside triangle T, their coordinates will not be limited to the usual
homogeneous range 0._1.

LOCATING THE POINT COORDINATES

Our rst task is to determine the coordinates of the Bezier nodes B. To simplify the algebra, let a,
and -y be the following ratios

d7 ,6

d3,2

d3,7

d6,4 - -- (13)
d6,3

where d. represents the distance between nodes i and j. Now note that the line U is described by

i- (u,-q,)t + q,, i - 1,2,3 (14)

forO<t<l. At nodeB., Q - 0sothat

t - -q/(u--q,). (15)

Thus, substituting (15) into (14) gives the coordinates of B8 as

Be: (0, 0, 1-a) (16)

where
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q2"1-91'2
- qu 1-q 1 u (17)

In the same way, we find that

B2: (1-0, 0, 0)

B 4: (-, 1-, 0) (18)

where

qZv 2-q 2V3
0--v

V2-q2

W3-q 3

The coordinates of the remaining nodes are found by noting that they are located midway between
nodes with known coordinates. For example, the coordinates of B. are the average of the coordinates of

B3 and B4

B+1Y 0- (20)

B16 is located at the average of the coordinates of B1 and B3

B15: ((1+qi)/2, q2/2, 93/2) (21)

and B1 6 is at the average of B4 and B,

v4-q1 1-yt+q2 q3
B16: (2 q l '  2 (22)

Similar results are obtained for the other nodal coordinates.

COMPUTING FUNCTION VALUES

By definition, we are given the function values and the values of its z and yi derivatives at the three
vertices. The value at node 9 is

9 - 0 + (V, *.3  r 3g)d3 ,g (23)

where 1'j is the unit vector from node i to node j

I,, - I (z1-z,) 13 + (Yj-YT• (24)

From Equation (20) we know that

+ ((-'i (

Y9 (112j 11 + ( (25)
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It follows that

3 (i- xT) T's + (Y5-Y 3) ]- '26)

Thus, Equation (23) yields

4$ - 038 4 13 + I-)("- 3) CIO (27)

In the same way we find that

#8 - 03 + t' 7-Z3) F13 +j (Y7-Y3) aI3
(I - )(l-a) z"*11 "* + (z7-z) a"5 + . (Y7-,S) -loil O- 2Y-s 7- L LLs

40 1 + Y ( 3-z) T+ + I
13- 17 + (1-72-6 a.(0# (3-YT) a

013 = 7 +  (,-X"7 a 2 '7

a aa
012 "07 + 2 (- + (Y-Y7) 17 (28)

ao I  ao1

1 1'017 ' +, + +,'1 2 3 + ( 2 )Z + 93x1] LIS + 19(q1 -3  + + 93Y7] T;!3

* *( q, + (q-1yz + 017

0 - + ' + + (q3-1)z .1 q 2YS + (q3-1) 7

(29)

The remaining nodal values are computed by using linear interpolation. First, note that
d1 2,6  dl.,8 d7 ,6
d- ,1 - 1. 30 = 7 .6(

Therefore, the line segments B,, 1B,,B 2 and B 7IBS1 IBIS will be straight provided that

*8 +1-i4r1 2

s 1( - +) "+"  7 (311)

Similarly

-02)~ + 10-13

014 + 00,,

4 - (1-7) O g + .)

Ole + -)016.+(32)

The only remaining unknown value is that of the interior node Q, alternatively labeled as Bl. The
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Bezier net of this node must lie in the plane of the triangle Bs,B17 ,B,. We note that the homogeneous
coordinates of Q are identical in both the original triangle B3 ,B6 ,B7 and in the central subtriangle
B161B17 ,B1 . Therefore the value of Q is

.0 11 + 924617 + q30 19g (33)

In view of the above lemma and the proceeding discussion, we have established the following theorem:

Theorem: Let J be an arbitrary triangulation of an arbitrary set of points P in a plane. Further, let
function and first z and y derivative values be specified on P. Then a piecewise quadratic C1 surface is
formed by placing a point Q, at an arbitrary location inside each triangle, thereby subdividing each
triangle into six triangles, and evaluating the Bezier coefficients of the quadratic polynomials on the
subdivided triangles according to the formulas in equations (27)-(29) and (31)-(33).

SPECIAL CASES

While the above theorem provides complete flexibility in choosing the locations of the interior
subdivision points Q,, it is appropriate to choose specific locations for these points in computer
implementations. Two logical locations for these points are (1) the triangle centroids, and (2) the centers
of the triangle inscribed circles. We note that although the centers of the triangle circumcircles have a
special meaning in the commonly used Delaunay triangulation procedure, these circumcenters represent a
poor choice for our algorithm since they may fall outside the triangle being subdivided.

THE CENTROID ALGORITHM

If Q. is chosen to be the centroid of triangle i then its homogeneous coordinates are
1

q, - q2 q3 = !. In this case, we find that
3

U1-U
2

3ul-I

3 -- .

3ws-1

A typical surface generated by the centroid algorithm is presented in Figure 6. Figure 6(a) shows an

irregular triangulation of 18 data points with each original triangle subdivided into six triangles by using
the centroids. Figure 6(b) presents a typical &1 quadratic surface produced over the irregular triangular

grid obtained by specifying function and derivative values at the vertices. As is apparent from this

figure, very complicated shapes may be produced by using only a few elements.

THE INSCRIBED CIRCUMCENTER ALGORITHM

• ., ,i iI II II1
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As is well known, the lines connecting the center of an inscribed circle to the triangle vertices bisects the
enclosed angles at the vertices. Referring to Figure 7 and using the area properties of triangle
homogeneous coordinates, we find that

Am! +i4 Am 2

9= I'l (35)

where A. is the area of the subtriangle indicated in Figure 7, A is the determinate

A , 2 Z21 z 2 z3

Y, Y2 Y3 (36)

and the subscripts m, ml, m.0 are cyclic modulo three. Since A. =I 2cat 0., Equation (35) yields
2

f2(cot M1 + cot m2)/II. (37)

Using the cotangent identity

cot 0m1 + cot Or2 = [( M1-m2)2 + (ym-ifm2)2]'/21AI (38)

results in the equation

r= 1 2 [(Z ..-- )2+(s, .- 2)2] /IAI2. (39)

Equation (39) may then be used to evaluate a, 0, and -1 in Equations (17) and (19).

A QUADRATIC HONEYCOMB ALGORITHM

Farin has published a C surface generation procedure for data points arranged in a hexagonal or
"honeycomb" pattern.01 He developed this procedure by using the properties of cubic Bezier polynomials.
We shall now develop a similar algorithm based on the properties of quadratic Bezier polynomials.

With a regular array of hexagons, a triangulation can be associated as described in Figure 8. The
vertices of the hexagons may be partitioned into the two groups C1, C3, C6 and C2, C4, C6 . We can then
create two new triangulations, both of which consist of triangles of identical size and shape, one
triangulation based on the points C1, C3, C6 and the other on the points C2, C4, C.. Following the
approach of Fa-in, we let each group of hexagon vertices that define the new triangulations form a plane
in three dimensions such that the vertex values correspond to the specified values on the honr-comb grid.
By insisting that the control vertices of the bezier net at the corners of the original triangle lie on the
average of these two planes, we can express each contro; vertex as a weighted sum of the values at the
honeycomb vertices. In particular, choosing the interior points Qj to be the triangle centroids, the
following simple formulas are obtained

- (C1+C2+C3 +C4+C6,+C)

12 (4C 3(C c6)  c 3)

12- ' 7c+.)4c+6 +sC ). (40)



70

By symmetry, identical formulas are obtained for the other two corners of the original triangle. The

remaining control vertices are obtained by enforcing the interior C conditions described in previous sec-

tions. Thus we see that Farin's construction is equivalent to giving position and tangent plane data at

the triangle vertices, although, in fact, no derivative values are specified on the honeycomb at all.

Figure 9 provides an example of surface generated by the quadratic honeycomb algorithm where only

function values at the vertices of the honeycomb grid were specified.

CONCLUSIONS

Although quadratics have often been dismissed as candidates for C' data interpolation, they are in

fact ideal for such application. The numerical values of a quadratic C' surface are controlled purely by

function and first derivative values at the data points; this surface is defined independently of the mid-

side and twist derivative conditions required by cubics. In the event that the data points are arranged in

a regular hexagonal array, a very simple formula exists for the surface purely in terms of surface values at

the honeycomb vertices.

The main advantage of the procedure developed in this appendix is its efficiency. Quadratic

polynomials in two-dimensions contain only six terms compared to the ten terms required for two-

dimensional cubics. Although the algorithm in this paper requires that each data triangle be divided into

six quadraic subtriangles to ensure C' continuity, while previous approaches are based on a subdivision

into three cubics, the number of subtriangles required by the surface is less important than the order of

the polyn,-mial used. The reason for this is that a particular subtriangle in a surface description can be

located ve:y quickly; a much greater time is required to draw the surface once the subtriangle is deter-

mined.

A secniid advantage of the quadratic approach in this appendix is its simplicity. Surfaces are obtained

by generr ing an arbitrary triangulation of the data points, subdividing each triangle into six, and using

the formulas derived in this paper. Since there are only six terms in a quadratic, the formulas defining

the quadr ,tic surfaces defined in this appendix involve relatively few fundamental coefficients.
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Figrure Is Two neighboring triangles showing the associated quadratic Bezier
nets and a typical control surface. The shaded areas on the control su~rface

must be planar for derivative continuity.
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Figure 2: (a) A representative set of points showing the Voronjo, polygons.
(b) The Pelaunay triangulation of the points in (a). (c) Subdivision of the

triangles in (b) into six subtriangles.
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Figure 8: (a) The triangulation and corresponding Bezier net used to generate
an arbitrary C, surface. (b) A complex cI quadratic

surface obtained by specifying random function and derivative values at the
data points.



78

2 3

2

Figure 7: The circumcenter of an inscribed circle bisect.s the triangle
vertex angles.
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Figure 8: The centroids of three adjacent hexagons may be used to form a
triangle. In this figure, this triangle has been divided into six triangles

with the associated quadratic Bezier net superimposed.
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APPENDIX D - ELIMINATING SPURIOUS SOLUTIONS IN ELECTRO-
MAGNETIC WAVE PROBLEMS BY USING C' FINITE ELEMENTS

ABSTRACT

A novel approach to eliminiting spurious or nonphysical solutions in finite element electromagnetic
field analysis is presented in this appendix. In this method, C 1 or first derivative continuous finite ele-
ments are used to construct vector field solutions that are exactly divergence-free both within and across
the edges of the elements. The appearance of spurious modes in high frequency analysis is generally at-

tributed to the inability of the finite element field solutions to satisfy the divergence and boundary con-
ditions required by Maxwell's equations. By using finite element vector field basis functions that satisfy
the divergence and derivative continuity conditions exactly, spurious solutions are completely eliminated.

In this appendix, this method is successfully applied to inhomogeneous dielectric waveguide problems. In
addition, a new C1 triangular finite element based on quadratics, the simplest of all possible general C1

elements, is introduced for finite element analysis.

I. INTRODUCTION

The firfe element analysis of waveguiding problems is one of the most important areas in computa-
tional high frequency electromagnetics. Different methods for analyzing dielectric-loaded waveguides and
cavities have been proposed. They include vectoral finite element formulations in terms of the
longitudinal-electric E and magnetic H. field components [1]-[2] as well as formulations that are based on
all three components of the field vectors [3]-[5]. From the beginning, it was recognized that a major
difficulty in these analyses is the appearance of spurious or nonphysical solutions [1]-[5]. These spurious
modes intermingle with the real physical solutions and make the distinction between correct and incorrect
solutions very difficult. One cause of spurious modes is that the finite element vector solutions do not

satisfy the divergence-free condition V o 7? - 0 [41-[6] that is required by the physics of the problem.
To remedy this difficulty, various methods that approximately impose the zero-divergence constraint in
the finite element analysis have been proposed. The penalty function method [6]-[9], for instance, incor-

porates the condition V * 71 = 0 to be satisfied in the least square sense in the variational functional.
However, this method requires a suitable choice for the penalty coefficient. Recently a method that ap-
proximately enforces the zero-divergence condition via a Galerkin formation has been introduced [10].

Still other methods that are based on approximating V o 1 = 0 by fimite difference [11] or by using
vector field basis functions that are approximately divergence-free [12] have also been proposed.

Focusing only on procedures that set the divergence of 7? to zero inside finite elements is, however,
insufficient. The exact solutions of electromagnetic field problems are not only nondivergent inside each
finite element, they are also nondivergent at inter-element boundaries. This means that a method of
correctly specifying the derivative of the solution at the element edges must be developed.

In this paper, a very general approach for constructing finite element vector field basis functions that
satisfy the zero-divergence condition both inside finite elements and across element edges is presented.
Using this method, the problem of spurious solutions in waveguide problems is completely eliminated.
The novelty of this approach is in the application of C' or first derivative continuous finite elements in
electromagnetics. Although the Clough-Tocher C 1 cubic [13] is well known in structural analysis, the use
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of C1 elements has thus far been limited to mechanical engineering applications. However, in this paper,
we shall demonstrate that C1 elements can be used to construct vector fields that are exactly divergence-
free, providing an alternative way of eliminating the long-standing problem of spurious modes in com-
putational high frequency electromagnetics. Further, we introduce a new set of C1 basis functions based
on quadratic polynomials [1A,- [151 for finite element work. These C1 quadratics have the advantage of
being lower order than the standard Clough-Tocher triangle.

U. FORMULATION

Consider a dielectric waveguide with arbitrary cross-section f2 in the x-y plane. With the time har-
monic variation ej " t assumed throughout, the two Maxwell curl equations are:

VXr = -wuo R (1)

VXi= (2)

and [,E] denotes the relative permittivity tensor of the dielectric. We assume throughout that the relative
permeability of the dielectric is unity. From (1) and (2) we obtain the vector wave equation

VX (er-lVx71) - k 2 = - (3)

where k2=w 2  of . In finite element analysis, this equation is replaced by the extremization of the func-
tional [3]

F= f [(VX~h e)"• k2 77]df2 (4)

At the stationary point of the functional (4), we obtain (3) as the Euler-Lagrange equation. The exact

solution 71 which satisfies (3) should in theory also satisfy V 9 77 = 0. This can be seen by taking the
divergence of both sides of (3). However, problems arise when we obtain an approximate solution that

does not satisfy (3) exactly and hence V e 7? 74 0. Solutions that do not even approximately satisfy

V * 7? = 0 are generally identified as spurious modes. To eliminate these spurious solutions, one can

limit the subspace of trial functions 7 in (4) to those that are exactly solenoidal in addition to satisfying
the essential boundary conditions.

To obtain trial functions 7 that satisfy V * 7? 0 a priori, it is mathematically straightforward

to expand 71 in general as

71 = - VX{[q,(z~y)a + ¢',(z,y)3" + 9,(zy)a,1e- j 0} (5)
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where S is the propagation constant in the longitudinal direction and ik' OY and ¢P are scalar functions

defined over 2. While the preceding expansion is formally valid, it requires that each of the scalar func-

tion ib have at least continuous first derivatives, that is, to be C1 throughout the entire domain 12. This

is because even though V 9 77 = 0 holds within the element, continuity of 7? Across element inter-
faces is required. Due to the differentiation in (5), C1 continuity of 0 automatically implies continuity of

7? throughout the entire domain f2. In other words, the integral form of Gauss' law

f 1 * ds =_ 0 (6)

is identically satisfied for an arbitrary surface s within the waveguide, including surfaces that traverse
element edges.

One can also appreciate the need for C1 continuity by substituting (5) into (4) and so that F is written

in terms of the trial function

F f / [(VXVX')* . ([f 1]-IVXVX ") - k2(VXW) . (VX )] d2. (7)

The functional (7) contains second derivatives of the scalar function 0; in order for such a functional to
be integrable, C 1 continuity for 'i is required [13]. It is emphasized that standard C" Lagrangian

polynomials are inadequate to yield an identically zero-divergence field TI; such fields require at least C1

continuity.

III. QUADRATIC C' TRIANGULAR FINITE ELEMENTS

The analysis presented in this paper is based on the recently developed C1 quadratic triangular finite
element that is described in [14]-[15]. Its construction is based on a subdivision principle. An interior
point Q, such as the centroid, or more generally the triangle incenter, is selected for each element in the
mesh. Then by joining each interior point to its element vertices and the interior points of neighboring
elements, each element is subdivided into 6 subtriangles (Fig. 1). Over each subtriangle, a second order

polynomial is defined using the Bernstein-Bezier representation [16]. After imposing C1 continuity, the
resulting C' element interpolates to the function and to the first z and y derivatives at the element ver-
tices.

For the purpose of this paper, it is sufficient to summarize the linear relationship between the 19
Bezier coefficients 0, and the function and first derivatives data of O(x,y) at the triangle vertices as given
in Table 1.

IV. FINITE ELEMENT FORMULATION

In conventional finite element analysis, discretization of the functional (4) results in the general eigen-
value problem [3]

[SJ{H} = k2[7{H} (8)
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where the components of the column vector {H) are the values of H' H. and H. at the nodal points and
the matrices [SI and [71 are given by

{H} [S]{H} = (VXlr . ([e]-'VXT) d.? (9)

+ /o .
{HI [71{H ) = f]( -(h dr2. (10)

According to (5), the vector {H} is related to a column vector {P) which contains the parameters
describing the scalar C' functions i'. , i = x,yz. This is represented by the "curl matrix [CI

(H) = [ql{P} (11)

Substituting (11) into (9) and (10) results in a modified eigenvalue problem that guarantees V e 7-==-0

[C"T[s[C){P} - k2[C' T [7j[Cl{P} . (12)

For the C' quadratic described in the previous section, the entries of {P} are the function and first
derivatives of 10 at the vertices of the element. The matrix [C is constructed for each element using (5)
and the informaLion provided in Table 1. The modified [51 and [71 matrices in (12) are then computed
for each element and assembled to form the global matrices for the whole problem.

An equivalent procedure is to carry out the expansion in (7). The modified [SI and [!1 matrices can
then be computed directly without resorting to the congruence transformation in (12).

The extremization of the functional (4) requires the essential boundary condition 7 n = 0 to be
U

satisfied along perfectly conducting surfaces. These boundary conditions on 71 then correspond to con-
straints on the O's in (5). Examples will be given in the next sections on the application of these con-
straints.

V. TEST EXAMPLES

A. EMPTY RECTANGULAR WAVEGUIDES

In the first example, we shall illustrate the present method by solving for the eigenmodes of an empty
square metallic waveguide of width W. For the TM modes of the empty waveguide, we let 0== -0=O and

write

7 --- -  7 (13)

The essential boundary condition 7 1 * 7 = 0 then implies that VVI/ * a t = 0 where a denotes
the tangent vector to the metallic boundary F on the z-y plane. To enforce this condition, it is sufficient
to impose ' = 0 on r. In the same way, to solve for the TE modes we write
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X 0-ix,y)e j '8Z' Z (14)

and require thatE * at = 0 on F. This is imposed by setting Vt Z . an = 0 onF.

The waveguide was discretized by using 81 C1 elements; the first 10 TM modes computed are given in
Table 2. It is interesting to note that even with a homogeneous guide, the classical analysis based on (8)
yields several zero eigenvalues in addition to the correct nonzero values. It is these zero eigenvalues that
shift to nonzero spurious frequencies if the guide is partially filled with dielectric. In contrast, the present
method as based on (12) does not produce any "zeron eigenvalues with an empty waveguide. Every
eigenvalue obtained corresponds to a physical solution. The next example shows that even with in-
homogeneous dielectric waveguides, no spurious modes appear in the analysis.

B. DIELECTRIC-LOADED WAVEGLTIDES

Consider a square metallic waveguide half-filled with dielectric. The dielectric has relative permitivity
Er 1.5 and the geometry is shown in Fig. 2. Solving for the LSM modes of the guide we let

PZ 0 and write

= VX (x,y)e-Z aj (15)

The boundary conditions 1 * a " = 0 on r now correspond to = 0 along y - 0 andy = W.

In one test, 100 C1 elements were used yielding a total of 319 unknowns. For 6W = 10, the first ten
eigenvalues from this test are given in Table 3 and compared to those obtained by Koshiba et al [8]. All
solutions obtained by using the C1 procedure correspond to physically correct solu. )ns so that the
problem of spurious modes is completely eliminated.

VI. CONCLUSION

A novel approach for eliminating spurious modes in waveguiding problems is presented. This method
is based on the use of C1 finite elements for constructing vector field solutions that are divergence-free.
Unlike previous approaches that impose the zero-divergence condition approximately by modifying the
variational procedure, field solutions from the present method satisfy the zero-divergence constraint ex-
actly both inside and across the edges of the finite elements. It is found that in this way, spurious solu-
tions do not occur.

This paper also introduces the use of C quadratic triangles to finite element analysis. These quad-
ratics are the simplest C1 element possible and hence the most economical to use in many applications.

It should be noted that the method presented in this paper for constructing divergence-free finite ele-
ment vector fields is a very general one. Its application is not limited to the two-dimensional waveguide
problems considered. For instance, we are presently investigating the elimination of spurious modes in
3-D electromagnetic cavities by applying three-dimensional C' finite elements. The procedure can also be
used to generate zero curl vector fields by changing the curl operator in (5) to the gradient operator.
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Table 1: Formulas for the Bezier Coefficients of Composite C1

Quadratics Finite Elements

ao _ a a* a
$33Ty OS rs 5 y-S 57 T-7 aY 7

¢1 ql qlal qlb1  q2 q2a2  q2 b2  q3 qsa 3  q 3 b3

*z (1-8)() (1-8)b4  B Ba, Bb,

03 1
04 Y yas YbS (1-Y) (1-Y)ae (1-y)b 6

fs 1

Q6 aa7 ab7  (1-a) (1-a) as (I-a)bs
07 1

06 a4 bi,
S 1 as bs

0,o x aa
010 1 1 b

O11 1 b7

€12 1 as be

013 1 ag b9

014. (1-8) (1-S)a1 (-B)bi e 583 Sbs

015 1 a, bl

Ox, Y Yal Ybl (1-Y) (1-Y)a2 (1-Y)b2
017 1 AL b2

Ox. a aaz a bj (1-a) (1-a' as (1-ci)b 3

fig I a3 b3

where (ql,q 2 ,q3 ) denotes the simplex coordinates of Q and

I I

a-= [(ql-l) x 3 +q 2 XS+q 3 X7 1 a a2-- [q, X3 +(q 2 -1) XS+q 3 X7]

a 3 =j [ql x 3 +q 2 x 5+(q 3 - I ) X71 a4"2 (x 7 -x 3 )

(I-,Y) "7a 5 =- (x-x 3) , a6---- (x3-x 5 )

(1-) (x6-x 7 )
= ( X5) a,=/d7,

a.g 2 (X3 -X 7 ) d7 6 /d 7 ,

6 d d 3,2 /d 3 7

d d,4/d 5,3

The expressions for b, are obtained from those of a. by substituting y, for xj

d.. denotes distance between node i and node j.
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Table 2: The First Ten TM Modes in a Square Waveguide

TM Mode C0 Finite Element Exact

1,1 4.4552 4.4429
1,2 7.0873 7.02481
2,1 7.0894 7.02481
2,2 8.9847 8.8858
1,3 10.1472 9.93459
3,1 10.1475 9.93459
2,3 11.5391 11.3272
3,2 11 5751 11.3272
1,4 13.4612 12.9531
4,1 13.4672 12.9531

Table 3: The First Ten LSM Modes for 6W = 10 in the
Dielectric Waveguide Shown in Figure 2.

No. C' Finite Element Hayata et al.

1 8.8109 8.8093
2 9.8834 9.3896
3 10.2751 10.2752
4 11.1073 11.1038
5 11.3835 11.2677
6 11.4685 11.4501
7 12.2654 11.9882
8 12.7957 12.6686
9 12.9510 12.8092

10 13.4298 12.9575
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APPENDIX E - MODELING THE OPEN BOUNDARY CONDITION IN THE
FINITE ELEMENT SOLUTION OF ELECTROMAGENTIC SCATTERING
PROBLEMS

ABSTRACT

Electromagnetic scattering problems are solved in this appendix by using the finite element method

within an artificial bound picture frame, and analytical expressions in the exterior region. Two schemes

for coupling the solutions in the two regions are proposed, namely, a "two-boundary approach" and a

"transfinite elements approach.0 The two boundary approach, as implied by the name, employs two

boundaries in the solution procedure and the superposition theorem to determine the proper linear com-

bination of modes for the problem. By allowing the exterior region and the finite element solution region

to overlap, the coefficients in the modal expansion are determined. As for the transfinite element method,

it is based on variational principles, choosing different basis functions for the finite elements solution

region and for the exterior region. The application of the two boundary approach to waveguide junction

problems as well as to object scattering problems is presented here. Application of the transfinite element

method to electrostatic problems and to object scattering problems are also studies.
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SECTION 1 INTRODUCTION

1.1 OPEN BOUNDARY SCATTERING PROBLEMS

A number of important electromagnetic problems involve the bistatic scattering of

electromagnetic fields from metal and dielectric objects in open regions. The primary categories of

these scattering problems are the following:

1. Radiation from antennas.

2. Electromagnetic scattering from arbitrarily shaped and inhomogeneous penetrable
bodies.

3. Microwave planar integrated circuits.

4. Waveguide junctions.

In these problems, knowledge of the field distribution is important in two different regions: (1) at

a very great distance from the scattering object and (2) within the vicinity of the scatterer itself.

Since the geometry of electromagnetic scatterers is in general complicated and often three-

dimensional, numerical methods are preferred for their analysis. These methods may be divided

into two groups: (1) integral equation methods, and (2) differential equation methods. Of these

two approaches, by far the most commonly used has been the integral approach, popularized by

Harrington with his monograph OFields Computation by Moment Methods".' However, despite

their popularity, integral methods have failed to solve a number of important scattering

problems, most notably those involving large or complicated variations in permeability and/or

permittivity.

On the other band, in other engineering disciplines, differential methods have been very

successful in modeling large, complicated inhomogeneous structures. Differential methods appear

to have an advantage precisely where integral methods are weak - namely in modeling the

interface condition between media with different properties. They have had limited application to

scattering problems for only one reason: differential methods cannot accomodate easily the open
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or infinite region encountered in scattering problems. Whiie a number of procedures to model

open boundary conditions with differential methods have been proposed and will be reviewed

below, none of the existing methods is completely satisfactory in terms of simplicity, ease of use,

and efficiency.

The purpose of this appendix is to develop new methods of modeling electromagnetic scattering

from complicated shapes. We employ the finite element method to model the fields in the near

field scattering region and develop two new ways to model the open region enclosing the scatterer.

This appendix is restricted to considering electromagnetic scattering problems to two dimensions.

We specifically treat the scattering that appears at waveguide junctions and from cylindrical

scatterers in free space. However, the methods developed in this report will also be useful for

solving the general electromagnetic scattering problems.

1.2. MODELING THE OPEN BOUNDARY CONDITION

Since finite element methods are best suited to modeling electromagnetic fields in the immediate

vicinity of the scatterer, some method of representing the fields in the infinite region must be

developed, as well as procedures for coupling the finite element solution region to the infinite

region. With regard to waveguide junction scattering, such procedures were developed relatively

early and are known by the name modal analysis technique2,3 4.The idea behind this method is to

replace the waveguide discontinuity problem by two appropriate semi-infinite uniform waveguides

separated by a so-called "discontinuity region". Muilwyk and Davies5 adapted an experimental

procedure proposed by Montgomery et a18 for finding the scattering parameters of a discontinuity

by locating the nulls of its standing wave patterns. They solved the field problems in the

discontinuity region by using the finite-difference method. A deficiency in the method proposed

by Muilwyk and Davies is that finding the locations of the nulls in the standing wave pattern is a

trial and error procedure and on each trial an eigenvalue problem must be solved.

Marin7 has applied the finite element method to solve the scattering problems with lossy

scatterers. A nonlocal boundary condition was employed to derive a variational formulation of

the scattering problem, and the finite element method was applied to determine the

approximation to the near fields. Scattering amplitudes are determined by means of an integral

representation obtained from Green's formula and properties of the nonlocal boundary operator.

But the complexity of the calculation for the nonlocal boundary operator has limited the usage of

this method. Recently Koshiba and Suzuki8 proposed a better way of using the integral technique

for solving the problem of a H-plane waveguide junction containing lossy ferrite posts of arbitrary

shape. The procedure is to consider two planes in each port and then to relate the unknowns on
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these two planes using an integral equation procedure. The result is a set of equations that are

combined with the equations obtained from the finite element method and solved directly for the

field values inside the discontinuity region. Unfortunately the resulting matrix equation is

complex and non-symmetric even for the lossless cases.

With regard to open cylindrical scattering problems, a common feature i- numerical modeling

methods is the subdivision of the problem into a finite, closed region called a npicture frame* and

the surrounding open space. A finite element or finite difference approximation is then made for

the fields within the picture frame and some device used to couple the exterior field boundary

condition to the picture frame boundary.

In one approach, proposed by Silvester and -siehg for electrostatics problems, a single picture

frame is defined and the energy functional of the entire region exterior to the picture frame

evaluated and added to the interior region energy functional. The solution is therefore involves

the electrostatic field in all space, but by a judicious choice of exterior field approximation

functions explicitly solves for the field only in the region interior to the picture frame. A major

difficulty with this formulation, however is that the integrand along the picture frame boundary

is singular and difficult to compute. In another approach, proposed by McDonald and Wexler 0 ,

two concentric picture frames are defined and the integral equation relating the potentials

between the two picture frames is used to specify the boundary conditions. Fields outside of the

outer picture frame are never considered in the solution process; the integral equation hi erely

provides a relationship between internal field values. However, the energy functional in the

exterior region can be evaluated by using an integral transformation and weighted Gaussian

quadrature formulas. The programming requirements of this procedure are also relatively difficult

and this has limited its application. By using the mode decomposition technique, Chang and Nlei

11 presented a method which they called Ounimoment methode to calculate the scattered fields of

dielectric cylinders of arbitrary cross section or of inhomogeneous material. The basic technique of

the method is to use the finite element method inside a circular picture frame, and to expand the

fields outside in cylindrical harmonics. Coupling th- c "r-ior and exterior solutions is performed

by matching the interior and exterior fields with re, - , to both the function values and the

normal derivative values on the circle. There are two disadvantages with this method: first for N

expansion functions in the exterior region, 2* N boundary value problems must be solved as the

basis functions; second, derivatives of the finite element solutions for each mode on the boundary

must be calculated.

Bettess 12 in 1977 proposed a procedure he dubbed *infinite elementsm. In this method, a series

of shape functions analogous to Lagrange polynomials but including an exponential decay term
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are generated. The approximate interpolation functions are unbounded geometrically hence the

name ainfinite elementso. Unfortunately the accuracy of this method depends on the ability of

the user to place the right decay factor in the infinite elements. Also forming such infinite

elements is relatively inefficient and complex so that usage of this method is relatively limited.

A somewhat better group of methods, are called "ballooningo and its variants. Ballooning was

invented by Silvester 13 for modeling the Laplacian problems of the open type. It also employs a

picture frame to limit the size of the finite element mesh; however, in this case the exterior

boundary is modeled by using uniform layers of finite elements on the outside. Unfortunately,

this method has deficiencies as well: first the algorithm is not efficient when applied to the wave

equation; second the field values outside the picture frame can not be obtained easily. Dasgupta
14 extended the ballooning algorithm into the cloning algorithm. In cloning, the formulation has

led to a quadratic matrix equation. The unknown relates to the desired matrix pertaining to the

infinite or semi-infinite region. The major contribution of the cloning method is that no

analytical expressions are required to supply the Sommerfeld radiation condition. But in order to

obtain the unknown matrix, a set of quadratic eigenvalue problems has to be solved. More

recently, a method called *infinitesimal scaling" has been proposed by Hurwitz15"16 .17. The

infinitesimal scaling method seeks to determine the coefficient matrix which expresses the

contribution of an element to the global functional in terms of the solution values on the

boundary nodes by using a scaling concept analogous to that used in ballooning, but in the limit

that the size of the boundary layer element approaches zero. By taking this limit, a nonlinear

first-order differential equation for the coefficient matrix is obtained. The price that is paid is

the need to solve the a nonlinear matrix differential equation.

1.3. THE NEW PICTURE FRAME PROCEDURES

In this appendix we develop two new picture frame techniques. However, we limit the shape
of the boundary between the picture frame and the open region to be simple; as circle in the
cylindrical scattering problems and lines in the waveguide junctions. By using the trir agular
finite element method to solve the fields interior to the simple shaped picture frame, A simple,
efficient and stable algorithm for numerical calculations is produced. We shall call the two new
coupling schemes described in this report the OTwo-boundary" approach and the "Transfinite
elements" approach.

The idea behind the "Two-boundary" approach is derived from the modal analysis technique in

which the finite element method and the superposition theorem are used to calculate the fields.

First the modal analysis technique is used to get the analytical expressions for the fields in the
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region exterior to the picture frame. Second, a number of boundary value problems in the picture

frame are set up and solved by the finite element method. In this step, finite element solutions

provide an expression for the numerical solutions. Finally, we require that the analytical solution

and the numerical solution match along the second boundary. The detailed description of the

"Two-boundary" approach will be covered in Section 3. It's application to the waveguide

junction problems as well as the results are in Section 4, and its application to open 2-D

scattering problems is given in Section 5.

For the ITransfinite elements,* we construct basis functions outside the picture frame in such a

way so as to convert the integral of the functional for the whole region into a integral over just

the picture frame plus a boundary integral. Applying the variational principle then provides a

matrix equation to be solved for the scattering solution. Section 6 presents the application of the

OTransfinite elementso method to model simple electrostatic problems. The application to the 2-D

scattering problems is investigated in Section 7.

mmmm mmmImmmmmm m mm m m mmm mmmm m m
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SECTION 2 INTRODUCTION TO THE FINITE ELEMENT METHOD

The basic concept of finite element analysis consists of three parts :

1. Interpolation: Distributed physical qualities may be approximated by using linear
combination of interpolating functions.

2. Mesh generation: A complicated physical shape may be subdivided into many
subregions, and the integrals of distributed functions over the whole region may be
broken into summations of the integral over the subregion.

3. Variational principles: For each problem, derive a corresponding functional either by
using Galerkin's method or by using the Rayleigh-Ritz method. Then apply the
variational procedure to the functional to derive a matrix equation.

2.1. VARIATIONAL PRINCIPLES

The finite element method is based on variational principles developed for the most part in the

last century. Variational principles for electromagnetic field problems can be derived from two

alternative points of view, namely, the Galerkin's method and the Rayleigh-Ritz method.

Consider the following two dimensional Helmholtz equation

v 2 0+ k2 -0 zy in D
?k=0on r (2.1)

involving what may be assumed to be a scalar potential variable O. The quantity k2 is a constant

invariant with position, whilst p is a given forcing function over the problem region D, and r is

the boundary of f2. For simplicity, we only consider the case of Dirchlet boundary conditions

here.
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2.1.1. GALERKIN'S METHOD

The steps in Galerkin's method to solve (2.1) are as follows:18

1. Find a complete function space AU to be called the Otrial function spaceO. Any

function u E A must satisfy the Dirchlet boundary conditions on F. The trial

function space A. will be used to write the numerical approximation of 0 of_(2.1) in

the form

N
E (2.2)
i=1

where N is the dimension of A., the P,'s are the unknown coefficients and ai(x,y)'s are

the basis functions of A.
U

2. For every trial function u in the trial function space AU, define a residual function

fu(X,Y)

f.(z,y) = V2 u(z,y) + k 2 u(z,y) - p(X,y) (2.3)

3. Construct another function space A to be called the utesting function space". Any
function in A will be called a testing function and will be used to weight the residual

V

function fu(x,y) defined in (2.3). Although, AV doesn't have to be the same as A.,
often it is convenient to have A, - AV.

4. Assign to each pair (v,u), v E A. and u E Au, a scalar number according to the bilinear
form B(v,u)

B(v,u) = -17 t(z,y) f.(x,y) dO (2.4)

By Green's theorem B(v,u) can be written as

Because for any testing function v E AV, v = 0 on F, this simplies to

B(v,u) V vs V u - k v u d O + f VP (2.6)

5. The problem of finding the solution of (2.1) is thus converted into the following

Find fI E As such that

B(Vfl - 0 for V v E A (2.7)

This solution is called a oweak solution" because the solution of (2.7) will be the
solution of (2.1) only in an approximate sense.



100

6. Write

N M
E 1pJ 0o.4,Y) V=2 j. v(Xs) (2.8)

iI j.-I

where M is the dimension of A., and the 6,(x,y)'s are basis functions of A,. Then

M N M

A- I -.fO Vj f

7. Because B(v, P) - 0 for V v E A., we have

N
(V9 a k"6 r (2.9)

i=l

8. Usually, Au  A., then (2.9) can be written in the matrix form

( S- kT) " = 7 (2.10)

where

" is the column vector of the coefficients I,.

S, Tare matrices with S.,.-J fa Vaj.V .df2

T.. = J a .df, j 17 d3

and 7" is a column vector with f= -fn p d12

Galerkin's method is analyzed in detail in reference 8 .

2.1.2. RAYLEIGH-RITZ METHOD

The Rayleigh-Ritz method is more complicated than Galerkin's method because it is not derived

directly from the differential equation. Rather, one first forms a functional from the stored

energy in the system; minimizing the functional over the set of approximating functions then

gives the approximate solution. The concepts embedded in the Rayleigh-Ritz method can be

explained in the following steps.

1. The energy functional F(IP) corresponds to equation (2.1) is
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R = <;P,p> + <pAP> - < IP,V'IP> - k<,> (2.11)

where the inner product < u,v > is defined as

<Uv> = 1 uvd 

Again, by Green's theorem and applying the same boundary conditions as in the
Galerkin's method

,, PW n1 (2.12)

2. Since we are interested in variations in F(P) about the solution point, we may begin
by writing the arbitrary function 4, as a sum of the true solution 0 and a second
arbitrary function C multiplied by a scalar e, I = 0 + eC
The first variation of F(IP) about the solution 0 is given by

OF
Flip)1 =0 = 1,0

which gives

6rjIP I = 2Jf p W + 21vt.VPdo k 2 bf 

by Green's theorem

6FTP) #=,,=-2 1f(,2 + k2 _ P) d2

Since 0 is the solution of equation (2.1), the first variation of F(IP) about the solution
is zero. Thus the energy functional F(IP) is stationary about the true solution .

3. If the energy functional F(VP) is stationary about a function 4', i.e.

aF
=0

which gives

U1,P) = -2f12C(V2 0 +k2o _ P) d(2 0

Since C is an arbtrary function, we have V2 04 + k2o - p = 0. So, the function 4 will
also be the solution of (2.1).



102

4. Approximating 1' by a linear combination of interpolation functions a.

N

i(2.13

gives the energy functional as

N N N
FVI)2 l 'f c dD+l i Vor1 .*Va.-k2a, a dr2) 1P.

a=1 6= 1=

5. Setting the first variation of F(OP) to zero in order to find the stationary point, then
results in

N

-m

i----1 .... N

This matrix equation then is the same as the one in (2.10)

1gThe details of the Rayleigh-Ritz method can be found in reference

2.2. MESH GENERATION

The finite element method involves breaking the problem region into mesh of small subregions.

Each subregion is called an element.

The mesh can made in any number of ways. One common method is to use a square or

rectangular grid with uniform sized elements. The method that has been used in this thesis

employs triangular elements of varying sizes. One advantage of triangular grids is their great

flexibility in fitting the geometry of different problems. Also when combined with the Lagrange

interpolation polynomials, to be discussed in the next section, the integration over the elements

can be performed analyticallyl o . The algorithm used to generate the triangular mesh is the

Delaunay triangulation procedure developed earlier at CMU20 . Use of the Delaunay algorithm

guarantees that the triangulation has a maximum sum of the smallest angles of the triangles.
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2.2.1 DELAUNAY ALGORITHM

For an arbitrary set of points, a geometric structure called Voronoi polygons is defined by the

regions where every point within a polygon is closer to that point than to any other. The

intersection of three or more Voronoi polygons is called a vertex. This vertex is by definition

equidistant from the three or more original points associated with the polygons that formed the

vertex. The Delaunay triangulation of the system is formed by forming triangles from the three

original points associated with each vertex.

One property of the Delaunay triangulation is that the circumcircle of a Delaunay triangle may

not contain a fourth Delaunay vertex. This property is the basis of the swapping algorithm 21 for

Delaunay triangulation which leads itself readily to finite element applications. An arbitrary

triangulation is formed from the original points. For each triangle, the neighboring point

associated with each of the adjacent triangles is checked. If any of those points is within the

circumcircle of the first triangle, the diagonal is swapped. See Figure 2-1.

Figure 2-1: Swapping a diagonal

In the event that a diagonal is swapped, it is necessary to check the Pew triangles again for

additional swaps. This procedure is repeated until no more swaps are necessary.

2.3. INTERPOLATION FUNCTIONS

The family of polynomials is one of the simplest class of functions to employ as interpolation

functions and were the first to be applied in the finite element method. In this thesis, we only

consider the most common interpolation polynomials used in the finite element method, namely

the Lagrange interpolation polynomials.

If ai(x,y) is the Lagrange interpolation polynomial associated with point (xi,yi), then we have by

definition
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0, Xjy) 1 ifi" i (2.14)

Equation (2.14) leads to the following physical interpretation of the coefficients in (2.13)

N

ia- 1

so that the coefficient %JP. is also the function value at node (xj,yj).

In this thesis, we use second order triangular elements. For each triangle, there are six nodes

and six quadratic Lagrange interpolation polynomials. Inside each triangle, we interpolate the

function %P by these six interpolation polynomials as

6

s-I

To derive the interpolation polynomials, it is convenient to introduce ahomogeneous coordinatess

on the triangle.

2.3.1. HOMOGENEOUS COORDINATES

Consider an arbitrary triangle with vertices numbered (1,2,3) and vertex coordinates (xl,Yl),

(x2,y2), (x3,y3 ) as indicated in Figure 2-2 , and let P be a point located within this triangle.

The coordinates (x,y) of the point P may be written in a symmetric form with respect to the

triangle (1,2,3) by defining a new type of coordinate system called homogeneous coordinates in

the triangle. These homogeneous coordinates are defined as follows: Let d, be the distance of the

point P from the base 2-3 of the triangle, hI be the corresponding altitude, and C, the ratio

d

The quantity C1 is called a homogeneous coordinate for the point P because its range is from 0 to

I for any point within the triangle (1,2,3).

In the same way, homogeneous coordinates C2 and C3 ranging from 0 on the other two sides to I

at vertices 2 and 3 are defined by the equation

d

C tan h n 1,2,3

In this equation, d m and h m are defined analogously to d I and h .
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Figure 2-2: A typical triangle with vertices numbered (1,2,3). d1 is the
distance of the point P from the base and hI is the triangle altitude.

The triangle (1,2,3) is divided into three by the point P.

The homogeneous coordinates CM are also called triangle area cordinates for the following

reason: The area of a triangle is one-half its base times its height. Accordingly, the ratio of the

area A p23 of the triangle (P,2,3) to the area A1,2, 3 of the triangle (1,2,3) is

Ap23  di

Consequently, the homogeneous coordinate CI represents not only the ratio of the distance d, to

the altitude h1 , but also the ratio of the area of the shaded triangle (P,2,3) in Figure 2-2 to the

area of the original triangle (1,2,3).

The three homogeneous coordinates C1, C2, C3 cannot be independent, since only two linearly

independent coordinates can exist on a plane. The relationship between the (C.) is revealed by

examining the properties of the triangles in Figure 2-2 where (1,2,3) represents the original

triangle and the remaining three triangles are composed of the lines connecting the point P with

vertices 1, 2, and 3. The area A 1 of the original triangle

Ap23 + A I, 3 + A 1 2p - A1 23

Dividing both side of this equation by A123 yields

C+ C2 + C3 =1

Thus, the sum of the triangle area coordinates is equal to unity. 22
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2.3.2. INTERPOLATION ON TRIANGLES

Now, consider the problem of defining quadratic interpolation polynomials on the triangles.

Since three point values are required to define a quadratic polynomial, quadratic interpolation

polynomials must have three interpolation nodes on each side, see Figure 2-3.

(,o,00)

0, ) 2o0,F

(0.,.o) 0 ,1

Figure 2-3: Node ordering for a second order triangular element

The polynomial

1

a1 (x,y) is zero along the lines C, = 0 and =j - 1/2 and it is one at 1. It follows that a,(x,y)

equals zero at the five points (II; ,2' ) = (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1, 0), (0, 1/2, 1/2), (0,

0, 1) and is equal to one at the vertex point number 1. Second-order polynomials which

interpolate to 1 at the other two triangle vertices are defined similarly.

To form a polynomial which interpolates to one at the center of side 1-2, we need to define a

polynomial which is zero along side 1-3 and 2-3 and has a unit value at the point (1/2, 1/2, 0).

The polynomial

04(z,v) =

provides these properities. Polynomials which interpolate at the remaining two midside nodes are

defined similarly.
22
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SECTION 3 THE TWO-BOUNDARY APPROACH

As is implied by the name, two-boundary method for solving open field problems requires two

surfaces to be defined in the solution process. Because two boundary surfaces are used, space is

divided into three parts by this algorithm. Figure 3-1 shows a portion of the infinite x-y plane in

Cartesian coordinates. A bounded region called R, is defined so as to contain all sources,

inhomogeneities, and anisotropies. The boundary of R1 is called Fr, and another larger boundary

r 2 is placed around r, . The region in between r, and r 2 is called R2, and the region exterior to

r 2 is called Re . The region enclosed by r 2, i.e. R1 E R2, will be the region where the finite

element method is used, which is then called the "finite element solution region.

aI

Figure 3-1: Separation of the problem region

8.1. MODAL ANALYSIS

Since the region exterior to R, i.e. R2 (D Re; is homogeneous and source free, homogeneous

solutions of the Helmholtz equation can be found by using the method of separation of variables

technique. In the region R, ED Re, the analytical expression for the fields 41 can be approximated

by M modes as

M

IP,)= ai -,(z~y) (3.1)
si
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where a's are the coefficients that need to be determined and the -yi(x,y) represent the analytical

solution for mode i in the system.

Since equation (3.1) is valid for the region R2 E Re, it also holds for the fields on the boundary
r,

M

Sr2- a X, ) I, r2 (3.2)
i-I

This leads to thefollowing boundary value problem for the fields in R, E R2

V2+k2) - o,= in RR 2

M
E'=2 a, y,,y) I r2 on r2  (3.3)
i-1

Equation (3.3) is not a solvable boundary value problem, because the boundary conditions depend

on the coefficients a 's which are not known yet.

We may use the superposition theorem to decompose equation (3.3) into M boundary value
problems corresponding to the modes -yi(x,y). The fields pattern for each mode "yi is designated X.

and can be obtained by using the standard finite element method to solve for the fields in region

R, ( R2 with the boundary conditions Xi(x,y) = -Y(xy)Ir2 on F2.

Once all the Xi(x,y)'s are determined, the fields VP inside the region R, E R2 can be expressed in

terms of the unknown coefficients a.'s

M
ip(z,y)= a 6 Xz,iy) for (z,y) E R, E R 2  (3.4)

i==1

3.2. MATCHING

Although, we have not yet solved the fields, the only problem remaining is to determine the M

coeffieients a's.

Notice that we have two expressions for the solution, one is equation (3.1) which is valid in

region R2 G R., and the other is equation (3.4) which is valid in region R, E R2. It follows that

both solutions are valid in the common region R2 and that they should have same values on the

boundary F1 .

Matching the modes obtained from these two solutions on the boundary jr' either by the
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weighted residue method or the least square method, results in a matrix equation which can be
solved for the coefficients as. Once the coefficients a.'s are known, the fields values at any point
can be calculated either by using equation (3.1) or by using equation (3.4). Details of the

calculations are presented in Sections 4 and 5.
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SECTION 4 TWO BOUNDARY APPROACH IN RECTANGULAR
WAVEGUIDE DISCONTINUITIES

4.1. THE NATURE OF THE PROBLEM

inc .D.R.

trans -- U

Figure 4-1: A general two-port rectangular waveguide discontinuity

A microwave network with an arbitrary discontinuity and two rectangular waveguide ports is

pictured in Figure 4-1. The discontinuity may be an arbitrary discontinuity in a single guide or

the coupling between two different guides. Many filters, matching sections, phase-correction units,

and other components can be represented by this structure.

Figure 4-1 consists of three parts: rectangular waveguide I on the left, rectangular waveguide II

on the right and the region between them called the discontinuity region (D.R.). Note that guides

I and II need not be colinear and the discontinuity region can be of arbitrary shape and may

contain dielectric objects or even metal objects; however the overall structure must be uniform

(ie. have constant cross section) in one direction (either the obroado or onarrow" transverse

direction). This requirement simplifies the resulting boundary value problem to two-dimensions.

If a transverse plane wave is incident from left, then there will be a reflected wave in guide I

and a transmitted wave in guide II and evanescent modes in both. The polarization of the waves



in the structure provides two fundmental kinds of waveguide discontinuities: H-plane

discontinuities in which the H field is in the plane of the discontinuity and E-plane discontinuities

where the E field is in the plane of the discontinuity.

4.2. FORMULATION OF THE TWO BOUNDARY APPROACH

zI z3 z4 z2

I

I 
D

Figure 4-2: Finite Element Solution Region

Assume that the discontinuity in Figure 4-1 is on the x-z plane and that the dimensions of the

guides are such that only the dominant mode can propagate in each guide. Because the

formulation is similar for H-plane discontinuities and E-plane discontinuities, only the H-plane

discontinuity formulation is presented here. In Figure 4-2, we have placed the boundary planes

z zl and zfz2 to form the "finite element solution region" as discussed in Chapter 3. The

finite element solution region must enclose the discontinuity region in the waveguide. Also shown

in Figure 4-2 are planes z-z3 and zfz4 which served as the matching boundaries. For an H-

plane discontinuity, with an incident wave H10 from the left , the incident electric field Ei c has

only a y component and can be expressed as

Ee- = sin(-) ezp(-,6 z), (4.1)
SC a a

where k is the wavenumber and 61 is the propagation constant in guide I.

The modes for the region exterior to the finite element solution region are:
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'7(z,z) sin(-) . exp(o, z) in guide I.
a

-ti ( 0,z) = in(--). xp(a* z) in guide I.

where

,,..{(.. . _ )2 }c)/. and a, i { () _ 2k2 1/2 (4.2)
a D

i = I ....

The modes 'YiI represent the reflected wave modes in the waveguide I, and -in are the transmitted

wave modes in waveguide I. Set

Oj(z) --- e(ailrz

and

0i (z) = sin(-.) qP,'(z) = exp( WIZ (4.3)

Then the modes can be written as the product of two functions, one depends only on x and the

other depends only on z.

IX,z) Z) 0t) ;kJ(Z)
and

4(,z',z) = (4-(z) (z) (4.4)

Combining equations (4.1) - (4.3) gives the analytical expression for the fields inside guides I and

Has
I N

I III1

i-2
and

M

E1(Z'Z) = .0b _ T )(z) Z > Z, (4.5)
i 4

Here the R. and T. are the reflection and transmission coefficients for each mode, N is the numberI I

of modes used in guide I and M is the number of modes used in guide U.

From the discussion in Chapter 3, two set of fields patterns XiI and Xi) within the finite element

solution region are obtained. Both solve the Helmholtz equation in the finite element solution

region , but with different boundary conditions on planes z ==V = 2 . The boundary
conditions for X.1 are )i(x,sl) - Oil(x) and \il(x,z2) ' 0, and for Xill , xill(x,zl) - 0 and

il(Xs-z 2) *f i I(x). ft follows that the numerical solution in the finite element solution region may
be written as
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N M

Now, we introduce two inner products for complex valued functions one on the plane z - z3'

the other on the plane a -z s4' as

< (), z),>v fz> v'(z) (, zdz

and (4.7)

rD

< -(),L<) > o Dv ,(z) u(z) dz

where * represents the complex conjugate. Since both equations (4.5) and (4.6) hold in the region

33 'd Z 2 31 and z2 2! 2 a Z4 , which then give the following equations need to be solved for the

coefficients R. and T.

< EIz jz 1 i-I..
< '( ,z 3 ), (z) >1 = <E 1 (z,,),(z) >1 '=

and

< ' 4 ( Oi',1, '(Z) >jH- < e'(z', 4 ) 0 0i (2) >11 i - I.... M (4.8)

Finally, substitute equation (4.5) and (4.6) into (4.8) results in the (N+M) times (N+M) complex

matrix equation

1 +/ exp (-iBI z1) -

0Q7 Y(Z1)f R - exp (-is z3) %1

%I ... IN : . ,* ---- - -,. ., .. .,0, .: . ... -(, -. . .. -, -. -. , -, - T*P(J
, 11 "r T - sp (IM ZU1 Z3) C

aM 0MI O I. .O 4 TMU - Je Z ) M

where (4.9)
A..,- < ),'(z,.,).,,j ,,) >, B.- < X,'(z.z),;z) >1

c,,-< ).'..,,),,(.)< ,'(,,,,,) ," (x)>C , -< 4I O'Z4) > >11



114

4.3. NUMERICAL RESULTS AND COMPARISON

A number of waveguide discontinuity problems have been studied and the results from this

analysis will be compared with that obtained from other theories and from experimental data.

The results here employ three modes on both sides for matching. Our experience indicates that

evanescent modes die out very quickly so that even if a small finite element solution region is

used *three modes matchingo still provides good results.

4.3.1. H-PLANE STEP AND E-PLANE STEP

Figure 4-3 shows a rectangular waveguide of width "a" joined symmetrically with a guide of

width aDm. The discontinuity in this problem occurs in the H-plane. Figure 4-3 provides a

comparison of our results with the approximate analytical solution of Lewin 23. For the

discontinuity in the E-plane, the results from present method as well as those from Marcuvitz24

are given in Figure 4-4.

4.3.2. THICK IRISES

Here we consider two types of irises in rectangular waveguides. Figure 4-5(a) and Figure 4-5(b)

show the magnitude and phase angles of the reflection coefficient due to square inductive irises of

various sizes. The agreement between the results computed here and that obtained by DaviesS is

within a few percent. Figure 4-6(a) and Figure 4-6(b) show the real and imaginary parts of the E

field contour lines for 6/a = 0.2, a/X = 0.7.

Figure 4-7 compares the VSWR ratio calculated from present method with the analytic

solutions from Kerns 2 5 for the single half-round inductive obstacle for r/a = 0.2.

4.3.3. WAVEGUIDE BENDINGS

The method we have developed may also be used to calculate the scattering of waves by

waveguide bends. The structure of the waveguide bends we are considering is shown in Figure

4-8. In this figure, the planes at* are reference planes for the parameters R and T . Table 4-1

gives a comparison of present theory and experimental data from Marcuvitz24 for different

bending angles.
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4.3.4. DIELECTRIC LOADED WAVEGUIDE

Figure 4-9 presents a dielectric loaded waveguide problem. We have solved this problem and

compared our results with the approximate solutions of Marcuvitz24 , who estimated the error in

his approximation to be less than a few percent. This comparison is presented in Table 4-2.
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Figure 4-8: (a) Real and (b) Imaginary parts6 of the E field contour lines for
6/a - 0.2 , a/X - 0.7
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._....p 2 a

3.00 - analytic solution by Kerns26

present method
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vswr

1.00 I I I
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a/X

Figure 4-7: Single half-round inductive obstacle
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E.

t

Figure 4-8: Waveguide bending

Table 4-1s The reflection and transmission coefficients R and T, relative to
the reference planes t, were calculated by present method for
H-plane corners with 9 = 300, 0 - 00 - goo
and compared with experimental data from Marcuvitz24

0 Mo 90 0 -90

a experimntal present experimental present expeie 'a' present
data method data method data method

R-4..028-jo.02 R.-.02gjo.022 Rwm-.13+iO.057 R=-0.144+jo.064 RmwO.0S3q+O.417 R-0.41+jO.430

0.762

Tin0.581-jo.813 T-0.596-jo.803 T-0.373jO16 T-c.350.O.g24 T-O.900+jO.114 T-.bos+io.os4

Rm.0.030.O.027 Rm.0.02&iO.026 R-"..154+jO.024 Rm.0.163+O.021 R-.1i16+jO.36 Rm.O.128+jO.366

0.7144

T-0.670.O.741 T-0.676-iO.737 T-".162-iO.976 T-O.137-iO.979 T-0.85-jO.27S T-O.370.O.303

R-O.02.jO.031 Rm.O.027.jo.030 Rm-O.l6l.j0.006 Rm.0.16i-J0.009 R-.o.22s+J0.2g6 R-.236+j.292

0.6724

T-0.737.jO.676 TmO.742-jO.669 T-.03-O.968 Tm-0.&3-O.986 T-O.738-jO.563 T-0.722-jO.631
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4.I aa
top view

cross section view

Figure 4-: Dielectric post waveguide

Table 4-2: Dielectric post in rectangular guide (H,, mode) our results
compared with the approximate analytic solutions
calculated from the formula in Marcuvitz2 4

for different dielectric constants. (X/a f 1.4)

Approximate Present method
9 r Analytic mesh I mesh 2

solution matrix size 146 matrix size 260
R = -0.025 - j0.155 R = -0.021 - j0.142 R = -0.022 - jO.148

4.0
T = 0.074 - jO.157 T = 0.982 - jO.130 T = 0.977 - jO.140

R = -0.101 - j0.391 R = -0.172 - jO.379 R - -0.175 - jO.378
9.0

T = 0.809 - j0.306 T - 0.832 - jO.371 T = 0.824 - jO.382

R = -0.560 - jO.490 R = -0.528 - jO.500 R = -0.534 - jO.404
16.0

T = 0.431 - jo.501 T - 0.474 - jO.498 T = 0.466 - j0.503

R = -0.882 - jO.313 R - -0.851 - jO.354 R = -0.859 - jO.339
25.0

T = 0.117 - jO.331 T = 0.150 - jO.360 T = 0.140 - j0.356
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SECTION 5 THE TWO-BOUNDARY APPROACH FOR OPEN
SCATTERING PROBLEMS

5.1. INTRODUCTION

An important practical application of electromagnetic field theory is the prediction of the radar

cross-sections of bodies that lie in unbounded space and are illuminated by an electromagnetic

wave. Radar cross-sections provide a measure of the amount of energy scattered by a body in a

given direction and may be calculated if the electric field around the body is known.

In the waveguide junction problem of Section 4, the governing equation is the Helmholtz

equation and the geometry extends to infinity only one dimension. Using the same governing

equation but extending to infinity in two dimensions, open cylindrical scattering problems can be

treated as a modification of waveguide junction problems. The discontinuities in the waveguide

which cause the perturbation of the fields is replaced by scatterers in free space that deflect the

incident wave. Further, the reflected and transmitted waves we computed in Section 4 are now

the scattered fields from the structure.

The cross section of a cylinder with refraction index q is shown in Figure 5-1. Define the

incident field E' and H' as the field with the cylinder absent and the scattered field Es and Hs as

the difference between the total field with the cylinder present (Et,Ht) and the incident field, that

is,

By assuming that the cylinder is infinitely long and that the incident wave propagates in the

plane of the figure, the scattering problem is reduced to two dimensions. When the length of the

cylinder is very large compared to the wavelength, this assumption will not contribute too much

error in the analysis. However if the length of the cylinder is of the same order as the wavelength

then a three dimensional analysis is needed.
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E i.€ -

Figure 5-1: The cross section of a scatterer

In this Section, we treat only the case of a T7E plane incident wave having the electric field in

the z direction. For the other cases, such as incident TM waves or cylindrical wave, the analysis

follows in much the same way. From Maxwell equations, the total electric field with the cylinder

present must satisfy the Helmholtz equation in all space

(V 2 + k0
2 1) z4= 0

k0 is the wavenumber in free space and q is the refraction index of the material. Furthermore, the

scattered field will die out as we go away from the cylinder, the boundary conditions at infinity is

Et = E'. Finally we will adopt the polar coordinates (r-0) system to analyze open scattering

problems since here two dimensions extend to infinity.

5.2. FORMULATION AND APPLICATION OF TWO-BOUNDARY APPROACH

5.2.1. MODAL ANALYSIS

For simplicity, assume that the incident wave is a TE plane wave that propagates in the x

direction and that the geometry of the scatterer is symmetric with respect to the x axis. We

define a circle r, with radius r, to serve as the boundary of the finite element solution region,

and call it the mpicture frame circle*. A second circle F2 with smaller radius r 2 is defined to be

the mode matching boundary and is called the "matching circlew, as shown in Figure 5-2.
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E inc CIMI

x

Figure 6-2: The picture frame circle and the matching circle

The reasons for choosing circles as the picture frame and matching boundaries are:

1. The circle is the simplest shape to be used as a boundary in polar coordinates.

2. The analytical solution for the exterior region is given by Hankel functions in the r
direction. Computing the Hankel functions is an expensive task compared to other
numerical procedures. By using circles for the picture frame and matching boundaries
we only need to compute the Hankel function once at each radius.

3. Since Hankel functions oscillate and change many orders of magnitude, the numerical
solutions would be unstable if the boundaries involved radii of different magnitudes.
For a circular boundary, only one radius is involved and this leads to stable numerical
procedures.

The analytical solution for the scattered field in the region r > r2 can be found by using the

method of separation of variables'. The result is

= H.(k0r) coa(ie) (5.1)

due to the symmetry, only the cos terms are introduced in (5.1). k0 is the wavenumber in the

free space, and H is the Hankel function of second kind of the order i. If we use (M+1) modes to

approximate the scattered electric field, then, together with the incident electric field, the

analytical expression for the total field in the region r _> r2 is

M
E'(rP)=cxp(-Jkcrcoe)+ a8'y*r,)r > r 2  (5.2)

i=O

where ezp(-JkocoeB) is the incident electric field and a.'s are the coefficients that need to be

determined. Note that, in general, the coefficients a are complex since all the functions are

complex valued in (5.1).
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Since equation (5.2) holds for r > r 2, it gives the electric field at the boundary r, as

M
Et(rl,f) = ezp(-jkOrlcose) +i'_ a. ', 1,,) (5.3)

i-O

We may approximate the term ezp(.jkorco#) by its (1%+I) Fourier components as

M
ezp(-, 0r-cose) = co + c icos(t0)

i-I

where

- 1j 2w ep(-jk0r~coe(6)) d8I f21r

c - ezp(-jk0 rlcos(6))*coe(iP) de

Thus, equation (5.3) can be written as

E'(r,) = {ao Ho(korl) + c} + {aH,(kor,) + c,}. Coe(io) (5.4)
ail

From equation (5.4), we set up (M+I) boundary value problems for the field patterns Xi(r,P)

inside the finite element solution region. Xi(r,f) is obtained by using the finite element method to

solve the Helmholtz equation with the boundary conditions Xi(r,6) = cos(if) on the boundary F1

within the finite element solution region. Once the (M+I) field patterns are known, by using the

superposition theorem, the total field in the finite element solution region can be expressed as

follows
M

~'(r,O) = {a0H0(korl) + co} x0(r,e) + 1: {a H.(korl) + ci})l r9 (5.5)
i==

Again, both equations (5.2) and (5.5) are valid in the region r2  r < r , so that we have two

solutions for the field on the matching circle r2

M
E'(r,9) ezp(-jkr 2co.)+ F a, v,(r 2,9) (5.6)

i-0

and
M

~~ Jf9  aAJJ.kr 1 ) + c} ,r 2 9 (5.7)
i-O

The last step is to match these two solutions on the circle r2, from which the complex

coefficients a's can be solved.
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5.2.2. MATCHING FORMULATION

Matching the two solutions is performed by minimizing the square of the difference between

(5.6) and (5.7) on the matching circle. From (5.6) and (5.7) we construct an L2 norm of the

difference between the numerical solution and the analytical solution on the matching circle

L =2j -Io t r 2,90) - (r 2 ) 2d#

and
M M

I ~~ -Et(r 2 ) 2 K(6) + a. Q~L eK*(8) + Q.a Q(e)}
i-ffi i-ffi

where
M

K(g) exzp(-k 0 r2coa9) - 1_ c, Xi(r 2,G)
i-O

QP) f H , k 2)co"(') - H,(kor), 2,0)

where the superscript represents the complex conjugate. By writing a. --xi + j yi and

minimizing L2
2 with respect to xi's and yi's, the following equations are obtained

M 21 M 22

E Zifj Re{(Q1 Q,IjdO+ 1:yf Im{Q1 Q,)dO= -fo Re(K* Q1) dO
i-O i=O

M 2w M 2x

E ifo Jm{(Q, Q-)d8 + E Y8]o Re{Q 1 Q,)de f Jm(K* Q1) dO
i-o i-0

1 0 o.... M (5.8)

Finally from (5.8) we can solve for x1's and yi's and obtain the coefficients a's.

5.2.3. FAR FIELD PATTERN

Once the complex coefficients a's are known, the scattered field in the exterior region is

obtained as

M
E'(,,)= a, -, r,9) r > r2 (5.9)

i-O

At large distances (r > > wavelength ), the scattered field in terms of (5.9) can be written as
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2i (...)1/2 cp-kr{z 0 +N

-irk r a.e(s)s,-I

It is customary to define the far field scattering pattern by the equation

N
g(P) = ao + a, co,(iM)

5.3. NUMERICAL RESULTS

Shown in Figure 5-3 is the geometry of two parallel circular cylinders with radii 0.2 wavelength

and 0.1 wavelength separated by 0.4 wavelength. The refraction indexes are 2.0 for both

cylinders. This problem has been analyzed by Mei1 I . The radius of the picture frame circle is 0.6

wavelength as also shown in the figure. Figure 5-4 shows two different meshes used to solve this

problem: Figure 5-4 (a) contains 165 unknowns and Figure 5-4 (b) contains 287 unknowns.

8.3.1. INCIDENT ANGLE 0 = 0.

When a plane wave is incident with angle 9i = 0* from the x axis, the solution should be

symmetric with respect to the x axis. Figure 5-5 presents a plot of lines of equal values of E. at

time phase 00, calculated by using N - 4 and r2 = 0.4 wavelength in the program. The jagged

lines in this figure are a result of imperfections in the plotter and do not represent discontinuities

in the solutions which were smooth. The resultant amplitude of the far field pattern from the

program compared with solutions obtained by Mei I I are shown in Figure 5-6 for the two meshes

(a) and (b).

5.3.2. INCIDENT ANGLE 'Ine = 90

Shown in Figure 5-7 are the plots of equal values of E2 for an incident angle of 9. =90"

The parameters used in the program are : N - 4, r2 - 0.4 wavelength, and the mesh used is the

same as Figure 5-4(b). Figure 5-8 is a comparison of the amplitude and phase of the far field

pattern obtained by the present method and that obtained by Mei I .
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Figue -3: Two parallel circular cylinders with radii
0.2 wavelength and 0.1 wavelength
separated by 0.4 wavelength
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(a)

(b)

Figure 6-4: Finite element meshes for the problem in Figure 5-3
(a) 165 unknowns (b) 287 unknows
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<- inc

%a)

<- inc

(b)

Figure 5-5: Plots of equal values of E.with time phase 00

(a) for the mesh in Figure 5-4 (a)
(b) for the mesh in Figure 5-4 (b)
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Figure 5-8: Amplitude of the far field pattern for e. = 0
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Figure 6-7: Plots of equal E z lines for ie. gO'

(a) time phase = 0 *
(b) time phase -90
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Figure 6-8: Far lield pattern (a) amplitude (b) phase
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SECTION 6 THE TRANSFINITE ELEMENT METHOD FOR
ELECTROSTATIC PROBLEMS

Described in this chapter and in Section 7 is a novel coupling scheme for the open problems
called the "transfinite element method*. The purpose of this name is to denote the fact that
analytical basis functions are employed in the infinite exterior region. In this chapter, we take
the electrostatics as a simple case to develop the theory. In Section 7, we return to the open

scattering problems but using the transfinite element method.

6.1. GENERAL DESCRIPTION OF THE TRANSFINITE ELEMENTS METHOD

The solution procedure for applying the transfinite elements method is

1. Derive a functional either by using the Rayleigh-Ritz method or by using Galerkin's
method for the problem being solved. The functional derived will be an integral over
the entire problem region.

2. Create a picture frame that separates the problem region into two parts 12 and S2e.
The region interior to the picture frame is f2i and the region exterior to the picture
frame is f2e" Let r be the boundary between them. The finite element method is used
in the interior region, so the picture frame must enclose all inhomogeneities and other
quantities that must be modeled by the finite element method. The functional integral
over the entire region is thus separated into two parts: one integral over the interior
region f2. and the other over the exterior region 2e.

3. Because the exterior region "2 is homogeneous, we can create a complete function
space A for all of the functions that satisfy the boundary value problem in the
exterior region 12e by using the superposition theorem and the method of separation of
variables. The basis functions in Ae thus found will be exact solution of the problem in
the exterior region. It follows that the integral of the functional over "2, is zero and
that only the integral over the interior region R.i must be computed.

4. Apply the standard finite element method in the interior region. The basis functions
employed can be the conventional Lagrange interpolation polynomials. The function
space A constructed from these polynomials represent the the basis vectors for the
function space for the numerical solution in the interior region.
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5. Impose continuity conditions of the solution between the function space A and the
function space Ae along the boundary F. This may be accomplished simply by setting
the values from both solutions equal at the boundary nodes. Note that usually, the
number of unknowns used to approximate the solution in the exterior region "e is less
than the number of nodes on the boundary F. The final function space A for the
numerical solutions in the whole region will be the union of the function space A and
Ae restricted by the continuity conditions imposed on the boundary F.

6. Finally, apply the stationarity property of the functional on the function space A to
obtain a matrix equation to be solved for the coefficients in the approximation.

6.2. FORMULATION OF TRANSFINITE ELEMENTS IN THE ELECTROSTATIC

PROBLEMS

6.2.1. FUNCTIONAL

The particular problem with which we will be concerned here is the solution of the Poisson

equation

- Vef(Vo=g in 120

subject to the boundary condition

0=0 at o(6.1)

The problem region !?o for (6.1) is of course unbounded.

According to the Rayleigh-Ritz method, the solution of (6.1) may be obtained by minimizing the

following functional

FtP)=f 1 ,erV bOV,0df2 2f0gkdf2 (6.2)

By using a circle r' with radius r1 to enclose all inhomogenities and sources , we separate fo,

into two regions: an interior region D? and the exterior region 9 e, as shown in Figure 6-1.

The integral in (6.2) can be integrated separately over 1?i and !2e as follows

Flo)- 17 ( d . - 2 17 gOW + fi V '9VPdO (6.3)

By Green's theorem we may rewrite this as
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Figure 6-1: The separation of the problem region
interior region fl, exterior region l2e and the boundary F

The reason for converting the functional from (6.3) to (6.4) will become clear in the following

section.

6.2.2. THE FUNCTION SPACE

Note that the exterior region fl, now is homogeneous and source free. If the net charge

contained in the interior region R. is zero, the function space A obtained by using the method of

separation of variables is

A . c#()+,sn~f (6.5)
si-

where M is the number of terms used to approximate the solution in the region 1"2, and a, and bi

are scalar numbers. If the net charge in 12 is not zero, a logarithmic term that vanishes at a

certain reference point must be included in the expansion.

We subdivide the interior region "2. into second order triangular finite elements and use

Lagrange polynomials as the interpolation functions. The function space A for the solution in the

D2 is
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AN P r

i f + u i r

where we have separated the interpolation polynomials into a,' for the nodes in t2. but not on the

boundary r and ir for the nodes on the boundary r. Correponding to aiI and carr are the

solution values *ji and i r 
, respectively. This subdivision will help in imposing continuity

conditions in the procedure.

The combined function space A - A U A as discussed in section 6.1 form the new function

space A

A ,,l ,/, in a , 0 E1.7)
Cen 

Continuity of the field is imposed by setting

cos e1 ... cos (Ma) sin (Me) 1 a

Tj2 cos e2  cos (Me2 )sin (M2 1

* r 1

ly cos p sin 0)P-.Cos (mep)sin (Mep) 1 1
iI r I b M

e R A (6.8)

whern (r1,,#) is the polar coordinates for the boundary point 0., and

cos e1 ... cos Me1 sin Me, 1 rl0 a1

cos e2 ... cos M62 sin Me2  
1

r I  bl

R A

cos e ... cos Mep sin Me 1

1 aM

mam

, , I I I I I
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6.2.3. THE BOUNDARY INTEGRAL

Since the functions in A are analytical solutions of the Laplace equation, the integral over fl ine

the functional (6.4) is zero for any choice or the coefficients a. and b.. Thus the functional reduces

to the following form

)= A . 2 'd-dr (6.9)

Thus by a judicious choice for the function space A, the functional F(O) is reduced from integrals

over the entire unbounded region into integrals over the interior region plus a boundary integral

term. This reduction has also be exploited by Silvester and Hsieho, although their procedure for

modeling the exterior region was quite different.

The boundary integral term

B - fr -.7 dl'

in (6.9) is evaluated simply by analytical integration. From (6.5), we have

- s --ja~co.(if) + &.ni)J(6.10)
a il

Subsitituting (8.10) and (6.5) into B given the result

IT

L-

r2
e 3-red = [albl...aMbM]

M7 8-7 am

r2M bM

= D A (6.11)

where
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r

IT

79

MiT

r

8.2.4. THE RESULTING MATRIX EQUATION

From equation (6.8), the nodal values 0i can be written as a connection matrix times a column

vector

I-
N

N -N

0 QR al

r b1

aM
bM (8.12)

where IN is an N by N identity matrix, and
N

[JN

0 0 R al
bi

Substituting (6.11) and (6.12) into the functional (6.9) results in am
brn

Fgz)= - z eSC Z' - 2L C Z' + A D AT L . (6.13)

where

S-fV a *V a dr? of g f r Wt

where the . below a variable indicates a row vector, and T represents the transpose of a matrix.
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Finally minimizing the functional F(x) with respect to the variables x gives the resulting matrix

equation

SII SI OR

ReTs reR =Zg

RoTSr + D

(6.14)

Notice that the matrix on the left-hand-side is real, symmetric and positive definite and can
therefore be solved very efficiently using the incomplete Choleski pre-conditioned conjugate
Gradient Method ' 6. Also note that if the number of coefficients for the exterior region is less than
the number of nodes on the boundary r, as is often the case, that the total number of unknowns

is reduced by applying the transfinite element procedure.

6.3. NUMERICAL RESULTS

6.3.1. PARALLEL-PLATE CAPACITOR

The problem of a square, parallel-plate capacitor was chosen as an example to illustrate the
method. A cross-section of the geometry is shown in Figure 6-2 and represents two infinitely long,
thin conducting plates. This problem is of particular interest since it contains a singularity at the
edge of the capacitor plate. The mesh used for this problem is shown in Figure 6-3 and a plotof
the equal potential lines is shown in Figure 6-4. As is evident from the plot, the behaviors of the
solution inside the picture frame is the same as one would expect if all space were modeled.

6.3.2. CIRCULAR CONDUCTORS

The second example is two infinitely long circular conductors both with radius A and sepnrnted
by distance D, the ratio A/D is equal to 0.25. The exact value of the capacitance per unit length
of this system is given by the formula 27

re 0

coh- '(D/2A)
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In this case the value of C = 2.3855 E0 " Due to the symmetry of the problem, we used only one

half of the problem region. The geometry of the problem and the semi-circle which served as the

boundary r is shown in Figure 8-5; the mesh and the resulting equi-potential line plot are in

Figure 6-6 and Figure 6-7, respectively. The capacitance we obtained is 2.3783 t0, an error of

0.3%.

8.3.3. FOUR LAYERS CAPACITOR

The last electrostatics example is two infinitely long rectangular cylinders filled with four

different dielectrics. The relative dielectric constants are 2.0, 3.0, 4.0, 5.0 for layer I, II, Ill, IV; as

shown in Figure 6-8. A simple approximation which treat these four capacitors in series gives the

C - 3.97351 to per unit length. Analysis by the transfinite element method gives a value 5.044

10" Based on the appearance of potential plot in Figure 8-10, we expect that the transfinite

element analysis provides the better result.
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Figure 6-2: The croewssectioD of the parallel-plate capacitor

Figure 0-3: Mesh for the parallel-plate capacitor
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Figure 0-4: The equal potential lines plot. The potential on
the top conductor is +1 volt and the potential on the bottom conductor -1 volt
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Figure 6-5: Circular cylinders with D 4 A

Figure 8-8: Mash for example 2
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Figure 6-7: The eqlual potential lines plot for example 2. The
potential on the circular conductor is 1 volt anad the potential on the

ground plane is 0 volt
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Figure 6-8: The geometry of rour layers capacitor,
with relative dielectric constants 2.0, 3.0, 4.0, 5.0

Figure G-0: The mesh for the four layers capacitor
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Figure 6-10: The equal potential lines Plot
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SECTION 7 THE TRANSFINITE ELEMENTS METHOD FOR OPEN
SCATTERING PROBLEMS

7.1. FORMULATION IN TERMS OF THE TRANSFINITE ELEMENTS METHOD

7.1.1. WEAK FORMULATION OF GALERKIN'S METHOD

As mentioned in Section 2, variational principles can be obtained either by using Galerkin's

method or by using the Rayleigh-Ritz method. It worth pointing out that Galerkin's method is

more general than Rayleigh-Ritz method since it allows non-self adjoint operators to be modelled.

By applying Galerkin's method as discussed in Section 2, the following bilinear form is

obtained

B(v,u) =/'v" (V2u + k0
2" u) dW (7.1)

where 12 is the problem region and represents the complex conjugate. As shown in Figure 6-1,

the circle F with radius r, separates the problem into fl, and R e" From the Green's theorem, the

bilinear form B(v,u) in (7.1) can be written as

B(VU) = / (Vv 7u -v~k2Y~u) dt -fvf -d-'- f v ( 2 u+kgu)dr2 (7.2)

7.1.2. THE FUNCTION SPACES

The trial function space for u and the testing function space for v are set equal in the analysis

here. The scattered field E in the region 1"e can be approximated by

M
E'= a0H0(lcor) + H.(kor)o a co8(i#) + b -eir(if)} (7.3)

Combining this with the incident electric field ezp(-,%rcoa9) gives the function space A,
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E inc -

x
ri

Figure 7-1: Interior region f7., Exterior region D,
and the boundary r

£ M
A = =e ,exp(.-Jkcro)+aH(kr)+j: H, kor) (a co(iO)+b.sin(i9) }} (7.4)

j=1

The function space A. in the interior region f2. is

N P

Where the same notation is used here as in Chapter 6. Continuity of fields at the boundary r'

results in the conditions
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1 exp(-Jkr 1 case I  1 case1 sine1  ... cosMe1 sinMe I  H0  a0

IF exp(-jkor2 cose 2  1 cose2 sine2 ... cosMe2 sinMe2  H1  0 a1

+ H b

0 *HM aM

If exp(-JKorP cOSep) 1 cosep sinep ... cosMep sinMep HM bM

P P ~~iC * oe ie H bM
= nc + eHT

(7.5)

Note that the matrix H is diagonal. The function space A is the union of A, and A, restricted

with the continuity conditions (7.5).

Since u and v are both in the function space A they must satisfy the Helmholtz equation in the

exterior region exactly, then the bilinear form B(v,u) simplifies to

B(vu) (Vv**Vuv r u) Af2 fv dr (7.6)

The functions u and v can be expressed as
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N P

Sm M

E' c +0 0 -H(kor) + ffH(kr).( a cos(nO) + b n in(n6)) in £2,

N P
0i| + E i

={si M (7.7)

E'WIC+ c .H0 (kor) + E Hj(k~r).( c cos(nf) + d Sin(ri#) in 1

Il-1

7.1.3. BOUNDARY INTEGRAL TERM

Note that since F is a circle with radius r, the boundary integral term simplifies to

S,9 2* au

5n Jr -rr,. V (r,,)A*-Z{ ,0) dP (7.8)

From equation (7.7), we have that

v'(r1,,,) = E ( ',)+-( 0r1)+ E -H(k0r1)-(oeo(-,)+dair(-9)

and

au O i'  M
,,-(r1  = - r ,,9)+o.a ho(k or)+ h (kOro,).(aco(i9)+b i.,(.,)) (7.9)

di 14k0r) 0
where h(k 0 r1 )= - k Approximating E lc and -- by (2M+1) Fourier components

gives

E' "(rise) - C+ {e coe(nf) + f n in(nf)}
M

, (ris) - o+ {.coe(n) + ..,.(,) }

Thus substituting (7.9) into (7.8) , integrating, and using the orthogonality property of

trignometric functions, the boundary integral (7.8) assumes the matrix form
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2Ho*ho aol"H *go
0"0 0 0

H h a- H
1 a1 Hg 1

HMhn bM Li*1

where 2Hoh 0

c [co C1 d 1  CmdM] H 0

Q hI

HMhM

and -

a0 2Hog0o

a 1 Hg11

bl Hl * 1 7.0

Note that the matrix Q is also diagonal. bM HIM (7.10)

7.1.4. A MATRIX EQUATION FOR SCATTERING

From equations (7.5) and (7.10), we see that the functional B(v,u) can be expressed in the

matrix form

S II  Sl -I

B(v,u) = vI Einc + ;H8T] * [i + eHj

(7.11)

where
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s..-- f(V.Voj- o i k0or)d

To obtain a weak solution for u - 1P, B(v,i') - 0 for V v e A. This condition results in the

following complex matrix equation to be solved for the coefficienta ! and -A

S II slr(DH , H 0 s I E'n 0

H OH T -inc

SH 0 SLrJ = L ::SiE K
(7.12)

Equation (7.12) can be simplified to give the final results

S11  S I -HoTsr
IiI

oTSrrG HA1
T~l H AR 1- oT s inc

N -Q(H.H*)"  HK.(H

(7.13)
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7.2. NUMERICAL RESULTS

The validity and versatility of the techniques presented here are demonstrated by the following

examplpes.

7.2.1. A CIRCULAR CYLINDER WITH ITS CENTER OFFSET FROM THE ORIGIN

Numerical solutions are generated by the transfinite element method with the center of the

boundary circle r at the origin, while the center of the scatterer, which has radius 0.3 X, is offset

by 0.2 X from the origin, as shown in Figure 7-2. Figure 7-3 is the mesh used in the program,

which corresponds to 187 unknowns. Placing it off-center in this analysis provides a good test of

the validity of the method.

I. Figure 7-4 is the far field pattern Jg()J for the refraction index of the scatterer equals to 2.0,

excellent agreement between numerical and exact solution exists. The exact solutions in Figure

7-4 are obtained by using the method of separation of variables11. The equal electric field plots

for different time phases are shown in Figure 7-5. The elements outside the circle in Figure 7-3

are used to interpolate the field values in the exterior region. The electric field outside the

boundary circle r has been evaluated by using equation (7.4).

U/. Shown in Figure 7-6 are the intensity plots and the far field patterns Jg(Vb) for refraction

indeces of 2.0+j2.0, 2.0+j20.0 and 2.0+j200.0. The strange curves within the shaded area are due

to the fact that the field intensities are almost zero there. Unfortunately, analytic solution for

these lossy cases do not exist for comparison.

7.2.2. PLANE WAVE SCATTERING BY A ELLIPTIC CYLINDER

Figure 7-8 presents the far field pattern Ig(J) for the elliptic cylinder scatterer in Figure 7-7

with a refraction index of 2.0. The results calculated here are compared with solutions from

Matin 7 and again varify the accuracy of the transfinite element approach. Propagation patterns

at different time phases are shown in Figure 7-9.

7.2.3. SCATTERER WITH NONCONVEX NONSYMMETRIC CROSS-SECTION

The cross-section of a kidney-shaped scatterer is shown in Figure 7-10(a) where the dimension of

the maxmimum object radius is 0.32 X. The incident radiation is a plane wave with wavelength 1

cm, and the direction of the incident wave is 450 from the positive x-axis. Three different

materials with refraction indexes 7, 6+j 200 and j 20000 are investigated, which are correspond

approximately to glass, salt, and carbon. 28'
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Figure 7-10(b) provides the finite element mesh used in the program.The results of these
calculations are shown in Figure 7-11 and are arranged in order top to bottom of increasing

conductivity. The graphs on the left side of Figure 7-11 are plots of the intensity of the total
wave. The graphs on the right side of Figure 7-11 display Ig(O)l versus 0 for these three materials

along with a comparison with the results of Marin7 .
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Figure 7-2: Off-center Circular Cylinder Scatterer

Figure 7-3.- Mesh size 187 unknowns
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2.00 -The solutions of transfinite element method;

o The solutions from K.K.Meill

-2.00

Figure 7-4: The far field pattern for refraction index = 2.0



159

0a tiephs0

(a) time phase 0
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00

(d) time phase. go

Id fo frn ime plime 9

Figure 7-6: I'qual line plots of E fied o irrn iepae
(a) time phame 0 '(b) time phia. :30

(c) time phase 60 (d) time phiase go
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5.00 1~.00 10 0

3.00

5.0

3.00 1.00 -1.00 30

1.0

3.00

(a) 9 2-j+O.0 3.00

833.00 1.00 1.00 3.00
1.00

3.00

(C) 17 - .0 + j 200.0

Figure 7-0: The intensity plot-s and the far field pattern plots for various refraction indexes.
(a) 2 -+ .j 2. (b) 2 + j 20. (c) 2 + j 200.
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Semi-major axis - 0.56752586 )

Semi-minor axis - 0.8688616 )\

(a)

(b) Matrix size 214

Figure 7-7: Dielectric elliptic cylinder and the corresponding mesh
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2.00

-Present analysis
*Marn

7

-4.00 -3.00 -2.00 -1.00 -. 010

-2.0

e int -

-2.00

Figure 7-8: The far field pattern of plane wave scattered
by the dielectric elliptic cylinder in Figure 7-7
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0a ie hs

(b) time phase 30
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(c) time phase 80

(d) time phase go.

Figure 7-g: The equal line plots of electric field for different time phases
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(b) mesh - Matrix size 314

Figure 7-10: The geometry (a) and mesh (b) for a kidney-shaped scatterer
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2.00

-2.0 r 2.00

-2.00

(a) 7 -7 0

e in- -135

2.00On
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(a)q -+SO

Figure 7-11: Intensity plot~s and tar field pattern plots for ditferent
refraction indexes
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APPENDIX F - AN ADAPTIVE SPECTRAL RESPONSE MODELING
PROCEDURE FOR ELECTROMAGNETIC SCATTERING

ABSTRACT

An adaptive scheme is proposed to generate the spectral response of waveguide junctions in minimum

computation time. The procedure uses the newly developed transfinite element method to determine the

fields in junctions at a few adaptively selected frequencies and then employs these solutions to generate

the spectral response throughout the frequency range of interest. In typical problems, the method con-

verges in five or six iterations to the full spectral response evaluated at one hundred points. We show by

solving example problems that the new procedure is orders of magnitude faster than the alternatives.

UETRODUCTION

Microwave circuits in use today often employ planar geometries that may be represented mathemati-

cally an an N-port microwave junction. An N-port microwave junction is, in general, defined as a struc-

ture that consists of an arbitrarily shaped cavity, with or without dielectrics, and has N rectangular ports

coupling in and out of the cavity. A number of studies have been made of microwave junction

problems J ,4. However, the classical analyses have been largely confined to networks of simple shape or

of geometry that lends itself to analytical or semi-analytical methods of solution.

The highly complex geometries used in microwave circuits today makes it necesary to use numerical

methods for analysis. Multi-port microwave junctions are solved numerically in the literature by using

one of two approaches: the eigensolution method" and the deterministic method7Ah. In the eigensolu-

tion method, either the finite element method or the finite difference method is used to compute the

,dgenvalues and the eigenvectors of the normal modes of the junction, and then circuit theory is used to

determine the cihcuit parameters1 °. In the deterministic method, the field solution is computed at a single

specified frequency and scattering parameters computed at that frequency only; the entire process must be

repeated to determine the solution at other frequencies.

While the eigensolution method is mathematically elegant, it has the disadvantage of requiring the

solution of large matrix eigenvalue equations. Since the solution of matrix eigenvalue problems is expen-

sive, recent work has focused on the deterministic approach that requires the solution of deterministic
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matrix equations only 7 '. Recently, Webb$ has used finite element method for the analysis of H-plane

rectangular waveguide problems. In his procedure, a set of boundary value problems is solved in order to

get the field solution at a single frequency point. Two similar procedures have been developed by Kon-

shiba. In Reference 7, the boundary element is combined with modal analysis to solve waveguide discon-

tinuity problems and the finite element method is combined with modal analysis to solve for fields in an

H-plane waveguide circulator in Reference 9. Unfortunately, however, both of these procedures result in

non-symmetric matrix equations that are expensive to solve.

In this paper, we introduce a new, highly efficient procedure for modeling N-port waveguide junctions.

The basis of the procedure is the transfinite element method 1 ' 12 in which modal basis functions are com-

bined with fmite element basis functions to provide solutions for open boundary problems. This proce-

dure results in symmetric sparse matrix equations that can be solved very efficiently by using the pre-

conditioned bi-conjugate gradient algorithm. Further, we develop a spectral response estimation proce-

dure by which solutions at a few adaptively selected frequencies are used to generate the full solution in

the frequency range of interest.

Numerical results are given for a T-junction, a screen filter containing E-plane metal inserts and a

dielectric filter to show the validity of the present procedure. A comparison of the computation times

required by the adaptive procedure and by the direct deterministic procedure for the T-junction problem

is also presented.

FORMULATION

THE TRANSFINITE ELEMENT METHOD

The structure to be analysed consists of a cavity coupled with N rectangular waveguides. The shape

of the cavity and the dimensions of the waveguides are arbitrary, but the overall structure must be

uniform so that the problem can be approximated by two-dimensional analysis. To simplify the formula-

tion, we assume that the junction is in the H-plane: problems involving E-plane junctions can be treated

in much the same way. Microwave planar circuit problems differ only in that the electric field is taken to

be a constant perpendicular to the plane of the circuit and that regions of different dielectric constant are

seldom used.

Consider exciting port 1 by the dominant TEl0 mode. The field over the cavity region 1 * and the

port regions extending to infinity must satisfy the Helmholtz equation:
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+-W to 0O

(1)

where w is the angular frequency of the excitation, to and j 0 are the permittivity and the permeability of

the free space, respectively, and er is the relative dielectric constant of the material.

In the transfinte element method 1'12 , the problem region is divided into two parts. An interior

region D. of finite extent and an exterior region D, that is homogeneous and unbounded. Within 12. finite

element basis functions are used to approximate the field; in . analytical solutions of the Helmholtz

equation provide a basis set for the field. Employing both sets of basis functions in a variational proce-

dure and requiring continuity along the boundary between D2, and 126 gives a symmetric matrix equation

that is solved for the field.

The application of the transfinite element method to multi-port microwave circuits is presented in

Reference 12. In this procedure, Equation (1) is converted into the matrix equation

A A

(2)

A A
where IS] and [21 are complex symmetric matrices, [A is a diagonal matrix, is the solution vector, k is

the wavenumber, and f and g are known vectors.

A A_
With respect to spectral modeling, we Dote that the matrices [SI and [21 and the vectors f and g are

frequency independent and can be computed once and stored for any problem geometry. Only the

wavenumber k and the matrix [ depend on frequency. However, since [AI is a diagonal matrix with only

N times M non-sero entries, where N is the number of ports in the circuit and M is the number of basis
A

functions used to approximate the fields in each port, it requires very little work to compute [].

Figure 1 provides the transfinite element solution of a microwave T-unction at 3 Hs.

, , , ! I I I
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SPECTRUM MODELING

In designing microwave components, the frequency response over a given frequency range is often re-

quired. With the deterministic approach in which Equation (1) is solved at a given frequency, Equation

(2) must be solved L times to get L points on the spectrum. For problems where the response changes

very quickly. the number of points L used to generate the spectrum must be large in order to get satis-

factory answers. The adaptive scheme proposed here for modeling the spectral response is best explained

by referring to Figure 2. Instead of solving Equation (2) L times, we solve the matrix equation at a few

adaptively selected optimal frequencies and then use these solutions as basis functions to generate the

entire spectral response.

A preliminary illustration of the procedure is as follows: In Figure 2(a), the three-port junction of

Figure I is solved by using the transfinite element method at the two limiting frequencies indicated by the

dots near the horisontal axis. These two solutions are then used as basis functions to generate a crude

spectral response curve throughout the region of interest. This is plotted as solid lines in Figure 2(a).

Next, we compute the error in the solution throughout the frequency range by substituting the crude

solution values into the governing equations for the system and by evaluating the residual. As explained

below, this may be done very efficiently. We then solve the system once again using the transfinite ele-

ment algorithm at the frequency that gave the marimum ruidual on the last pass. The new dot in

Figure 2(b) shows the location of this solution as well as the new spectral response curve computed by

using the three transfinite element solutions as basis functions. This process is repeated for six iterations

in Figure 2 until the error in the entire spectral response curve is within acceptable limits. As is evident

from Figure 2(f), the procedure converges to the solution given in Reference 4, but as shown below, in

much less computer time.

THE ADAPTIVE ALGORITHM

To develop the adaptive spectral response modeling algorithm, first approximate the solution of

Equation (2) at an arbitrary frequency w by a linear combination of the basis functions ti

a--

(3)

where n is the number of basi functions and ai are unknown coefficients. The basis functions 1 are

taken to be the solutions of (2) at n specified frequencies w. Substituting Equation (3) into (2) gives
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A A A

(4)

Since [SJ, (1, f, and g are frequency independent, we can rewrite Equation (4) A

(5)

where

A

A

(6)

Now applying the moethod of leat-s*quares to Equation (5) leads to the following matrix equation for the
coefficients ai

(JAI-Ok BIE k41C1+!DJ) - -070 -0174 + 'r

(7)

where
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Bi, - + 7j

F,. -
A

+ 9

d. _.-j k2 t~r SPfA.

(8)

Notice that in (3), only the matrix ID] and the vector d depend on the frequency w. The computation

time for evaluating [D] and d for each frequency is negligible because [-y] is a diagonal matrix. Matrix

Equation (7) is therefore trivial to set up and it is inexpensive to solve since it is only of order n.

The residual associated with the frequency w after solving for the coefficients as4w) is evaluated as

fohows

r as
i

(9)

The norm of the residual is given by
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- • --- ) 1 / 2

(10)

The entire adaptive solution process is presented in the flowchart in Figure 3. First. input, the desired
frequency limits n, ad L, the number of equal divisions in the frequency range to be used. Next solve

(2) at the two limiting frequencies to generate the basis functions I, and the auxiliary functions

2,1, . From the basis functions and the auxiliary functions, compute the components of matrices

A], 1g, [Cl and of vectors F, C, H. Then generate L approximate solutions at the intermediate fre-
quencies and compute the residue at each frequency to indicate the corresponding error. At the maximum

residual, solve Equation (2) again and add the new solution to the basis set for generating the spectrum.

Repeat the process until the maximum residual is smaller than the prescribed error tolerance qT.

NUMERICAL RESULTS

Figures W-5 provide examples of spectrum response obtained by using the new adaptive spectrum

modeling procedure. The number of modes used in each port to generate the results is 3 for all of the

problems shown. Solutions of Equation (2) are obtained in the computer program by using the precon-

ditioned bi-conjagate gradient method ane. have relative residual L2 norms smaller than 1.0e-5. The error

tolerance q employed is 1.0e-4.

Figure 2 shows the convergence of the procedure for modeling the T-junction in Figure 1 throughout

the frequency range of dominant mode propagation. The number of frequency points L used was 50, and
the frequencies that are solved for and used as the basis functions in the procedure are indicated by dots

on the axis. As shown in Figure 2, the procedure converges when n - 6. Comparing the fmal adaptivity

produced spectral response with the boundary element deterministic solution of Reference 7 shows excel-

lent agreement.

The analysis presented here is not limited to dominant mode propagation. Figure 4 shows the spectral
response computed by the adaptive spectrum modeling procedure for the E-plane metal insert Slter shown

in Figure 4(f) from 30 GHs to 60 GHz. The number of frequency points used was 100 for the plots in
Figure 4(a) - 4(e), and the procedure terminates in six iterations. A comparison of the final spectrum

response with that obtained by the field expansion calculation in Reference 13 is given in Figure 4(e).
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Figure 5(a) presents the adaptive solution of a waveguide dielectric filter modeled by Koshiba and

Suzuki7. Here we used L - 100 spectral points; the total number of solved frequency points was only 5.

Figure 6 shows a comparison of the computer time required by the new procedure and that of the

deterministic approach. The time for the deterministic approach is based on the total time needed to

solve Equation (2). The times reported are for the T-junction problem using a DEC VAX 11/780 com-

puter; the matrix size was 500 by 500.

CONCLUSIONS

A very 4licient procedure for determining the spectral response of microwave circuits has been

developed. The procedure may be applied to waveguide junctions involving either E-plane or H-plane

discontinuities or to microwave planar circuits. The spectral response evaluation procedure employs the

transfimite element method to solve for the field at a few adaptively selected frequencies and then con-

structs the solution at any frequency by using the computed solutions as basis functions. In typical

- 'blems, only five or six transfinite element solutions are required to converge to the full spectral

response evaluated at 100 points throughout the frequency range of interest.

In the past, there were two basic alternatives to computing the spectral response of microwave circuits:

One could employ the eigensolution approach that required expensive eigenvalue problems to be solved

but gave solutions at in-between frequencies very economically, or one could employ the existing deter-

ministic approach that provided solutions at a specified frequency relatively efficiently but had to be

reapplied at every frequency of interest. The new spectral response modeling procedure combines the

advantages of both approaches and gives the full spectral response in orders of magnitude les computing

time than the alternatives.
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to.)(b

FlgUPO 1: Transfinite Element Solution of a Microwave T-Junction at (a) Real Part of the Con-
stant E Fieid, (b) Imagiary Part.
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